2 research outputs found

    Thermodynamic Relationships with Processivity in <i>Serratia marcescens</i> Family 18 Chitinases

    No full text
    The enzymatic degradation of recalcitrant polysaccharides is accomplished by synergistic enzyme cocktails of glycoside hydrolases (GHs) and accessory enzymes. Many GHs are processive which means that they remain attached to the substrate in between subsequent hydrolytic reactions. Chitinases are GHs that catalyze the hydrolysis of chitin (β-1,4-linked <i>N</i>-acetylglucosamine). Previously, a relationship between active site topology and processivity has been suggested while recent computational efforts have suggested a link between the degree of processivity and ligand binding free energy. We have investigated these relationships by employing computational (molecular dynamics (MD)) and experimental (isothermal titration calorimetry (ITC)) approaches to gain insight into the thermodynamics of substrate binding to <i>Serratia marcescens</i> chitinases ChiA, ChiB, and ChiC. We show that increased processive ability indeed corresponds to more favorable binding free energy and that this likely is a general feature of GHs. Moreover, ligand binding in ChiB is entropically driven; in ChiC it is enthalpically driven, and the enthalpic and entropic contributions to ligand binding in ChiA are equal. Furthermore, water is shown to be especially important in ChiA-binding. This work provides new insight into oligosaccharide binding, getting us one step closer to understand how GHs efficiently degrade recalcitrant polysaccharides

    Aromatic-Mediated Carbohydrate Recognition in Processive <i>Serratia marcescens</i> Chitinases

    No full text
    Microorganisms use a host of enzymes, including processive glycoside hydrolases, to deconstruct recalcitrant polysaccharides to sugars. Processive glycoside hydrolases closely associate with polymer chains and repeatedly cleave glycosidic linkages without dissociating from the crystalline surface after each hydrolytic step; they are typically the most abundant enzymes in both natural secretomes and industrial cocktails by virtue of their significant hydrolytic potential. The ubiquity of aromatic residues lining the enzyme catalytic tunnels and clefts is a notable feature of processive glycoside hydrolases. We hypothesized that these aromatic residues have uniquely defined roles, such as substrate chain acquisition and binding in the catalytic tunnel, that are defined by their local environment and position relative to the substrate and the catalytic center. Here, we investigated this hypothesis with variants of <i>Serratia marcescens</i> family 18 processive chitinases ChiA and ChiB. We applied molecular simulation and free energy calculations to assess active site dynamics and ligand binding free energies. Isothermal titration calorimetry provided further insight into enthalpic and entropic contributions to ligand binding free energy. Thus, the roles of six aromatic residues, Trp-167, Trp-275, and Phe-396 in ChiA, and Trp-97, Trp-220, and Phe-190 in ChiB, have been examined. We observed that point mutation of the tryptophan residues to alanine results in unfavorable changes in the free energy of binding relative to wild-type. The most drastic effects were observed for residues positioned at the “entrances” of the deep substrate-binding clefts and known to be important for processivity. Interestingly, phenylalanine mutations in ChiA and ChiB had little to no effect on chito-oligomer binding, in accordance with the limited effects of their removal on chitinase functionality
    corecore