233 research outputs found
Type I interferonopathy due to a homozygous loss-of-inhibitory-function mutation in STAT2
International audiencePurpose STAT2 is both an effector and negative regulator of type I interferon (IFN-I) signalling. We describe the characterization of a novel homozygous missense STAT2 substitution in a patient with a type I interferonopathy. Methods Whole-genome sequencing (WGS) was used to identify the genetic basis of disease in a patient with features of enhanced IFN-I signalling. After stable lentiviral reconstitution of STAT2-null human fibrosarcoma U6A cells with STAT2 wild type or p.(A219V), we performed quantitative polymerase chain reaction, western blotting, immunofluorescence, and co-immunoprecipitation to functionally characterize the p.(A219V) variant. Results WGS identified a rare homozygous single nucleotide transition in STAT2 (c.656C > T), resulting in a p.(A219V) substitution, in a patient displaying developmental delay, intracranial calcification, and up-regulation of interferon-stimulated gene (ISG) expression in blood. In vitro studies revealed that the STAT2 p.(A219V) variant retained the ability to transduce an IFN-I stimulus. Notably, STAT2 p.(A219V) failed to support receptor desensitization, resulting in sustained STAT2 phosphorylation and ISG up-regulation. Mechanistically, STAT2 p.(A219V) showed defective binding to ubiquitin specific protease 18 (USP18), providing a possible explanation for the chronic IFN-I pathway activation seen in the patient. Conclusion Our data indicate an impaired negative regulatory role of STAT2 p.(A219V) in IFN-I signalling and that mutations in STAT2 resulting in a type I interferonopathy state are not limited to the previously reported R148 residue. Indeed, structural modelling highlights at least 3 further residues critical to mediating a STAT2-USP18 interaction, in which mutations might be expected to result in defective negative feedback regulation of IFN-I signalling
L'anxiété et les symptômes dépressifs chez les parents d'enfants atteints de syndrome de Dravet
International audienc
Effect of HLA DR epitope de-immunization of Factor VIII \u3ci\u3ein vitro\u3c/i\u3e and \u3ci\u3ein vivo\u3c/i\u3e
T cell-dependent development of anti-Factor VIII (FVIII) antibodies that neutralize FVIII activity is a major obstacle to replacement therapy in hemophilia A. To create a less immunogenic therapeutic protein, recombinant FVIII can be modified to reduce HLA binding of epitopes based on predicted anchoring residues. Here, we used immunoinformatic tools to identify C2 domain HLA DR epitopes and predict site-specific mutations that reduce immunogenicity. Epitope peptides corresponding to original and modified sequences were validated in HLA binding assays and in immunizations of hemophilic E16 mice, DR3 and DR4 mice and DR3 × E16 mice. Consistent with immunoinformatic predictions, original epitopes are immunogenic. Immunization with selected modified sequences lowered immunogenicity for particular peptides and revealed residual immunogenicity of incompletely de-immunized modified peptides. The stepwise approach to reduce protein immunogenicity by epitope modification illustrated here is being used to design and produce a functional full-length modified FVIII for clinical use
Corticosteroids versus clobazam for treatment of children with epileptic encephalopathy with spike-wave activation in sleep (RESCUE ESES): a multicentre randomised controlled trial
BACKGROUND: Epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS) is a rare syndrome associated with cognitive and behavioural regression. On the basis of mostly small observational and retrospective studies, corticosteroids and clobazam are often considered the most effective treatments for this syndrome. We aimed to compare cognitive outcomes of children with EE-SWAS 6 months after starting treatment with either corticosteroids or clobazam. METHODS: We did a multicentre, randomised controlled trial at eight tertiary referral centres for rare epilepsies in seven European countries. Children were eligible to participate if they were aged 2-12 years, were diagnosed with EE-SWAS within 6 months before inclusion, and had not been treated with corticosteroids or clobazam previously. Participants were randomly assigned (1:1) to treatment with corticosteroids (either continuous treatment with 1-2 mg/kg per day of prednisolone orally or pulse treatment with 20 mg/kg per day of methylprednisolone intravenously for 3 days every 4 weeks) or clobazam (0·5-1·2 mg/kg per day orally). The primary outcome was cognitive functioning after 6 months of treatment, which was assessed by either the intelligence quotient (IQ) responder rate (defined as improvement of ≥11·25 IQ points) or the cognitive sum score responder rate (defined as improvement of ≥0·75 points). Safety was assessed by number of adverse events and serious adverse events. Data were analysed in the intention-to-treat population, which included all children as randomised who had primary outcome data available at 6 months. The trial is registered with the Dutch Trial Register, Toetsingonline, NL43510.041.13, and the ISRCTN registry, ISRCTN42686094. The trial was terminated prematurely because enrolment of the predefined number of 130 participants was deemed not feasible. FINDINGS: Between July 22, 2014, and Sept 3, 2022, 45 children were randomly assigned to either corticosteroids (n=22) or clobazam (n=23); two children assigned clobazam dropped out before 6 months and were excluded from the intention-to-treat analysis. At the 6-month assessment, an improvement of 11·25 IQ points or greater was reported for five (25%) of 20 children assigned corticosteroids versus zero (0%) of 18 assigned clobazam (risk ratio [RR] 10·0, 95% CI 1·2-1310·4; p=0·025). An improvement of 0·75 points or more in the cognitive sum score was recorded for one (5%) of 22 children assigned corticosteroids versus one (5%) of 21 children assigned clobazam (RR 1·0, 95% CI 0·1-11·7, p=0·97). Adverse events occurred in ten (45%) of 22 children who received corticosteroids, most frequently weight gain, and in 11 (52%) of 21 children who received clobazam, most often fatigue and behavioural disturbances. Occurrence of adverse events did not differ between groups (RR 0·8, 95% CI 0·4-1·4; p=0·65). Serious adverse events occurred in one child in the corticosteroid group (hospitalisation due to laryngitis) and in two children in the clobazam group (hospitalisation due to seizure aggravation, and respiratory tract infection). No deaths were reported. INTERPRETATION: The trial was terminated prematurely, and the target sample size was not met, so our findings must be interpreted with caution. Our data indicated an improvement in IQ outcomes with corticosteroids compared with clobazam treatment, but no difference was seen in cognitive sum score. Our findings strengthen those from previous uncontrolled studies that support the early use of corticosteroids for children with EE-SWAS. FUNDING: EpilepsieNL, WKZ fund, European Clinical Research Infrastructure Network, and Ming fund
Bone Marrow Transplant
Mucopolysaccharidosis type I-H (MPS I-H) is a rare lysosomal storage disorder caused by α-L-Iduronidase deficiency. Early haematopoietic stem cell transplantation (HSCT) is the sole available therapeutic option to preserve neurocognitive functions. We report long-term follow-up (median 9 years, interquartile range 8-16.5) for 51 MPS I-H patients who underwent HSCT between 1986 and 2018 in France. 4 patients died from complications of HSCT and one from disease progression. Complete chimerism and normal α-L-Iduronidase activity were obtained in 84% and 71% of patients respectively. No difference of outcomes was observed between bone marrow and cord blood stem cell sources. All patients acquired independent walking and 91% and 78% acquired intelligible language or reading and writing. Intelligence Quotient evaluation (n = 23) showed that 69% had IQ ≥ 70 at last follow-up. 58% of patients had normal or remedial schooling and 62% of the 13 adults had good socio-professional insertion. Skeletal dysplasia as well as vision and hearing impairments progressed despite HSCT, with significant disability. These results provide a long-term assessment of HSCT efficacy in MPS I-H and could be useful in the evaluation of novel promising treatments such as gene therapy
ANK2 loss-of-function variants are associated with epilepsy, and lead to impaired axon initial segment plasticity and hyperactive network activity in hiPSC-derived neuronal networks
PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS
Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.
Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
Genotype-stratified treatment for monogenic insulin resistance: a systematic review
This is the final version. Available from Nature Research via the DOI in this record. Data availability:
All data used in this review is available from publicly available and herein referenced sources. A list of included studies is provided in Supplementary Data 1. All data generated or analyzed during this study are included in this published article and its supplementary information files. Source data for the figures are available as Supplementary Data 2.BACKGROUND: Monogenic insulin resistance (IR) includes lipodystrophy and disorders of insulin signalling. We sought to assess the effects of interventions in monogenic IR, stratified by genetic aetiology. METHODS: Systematic review using PubMed, MEDLINE and Embase (1 January 1987 to 23 June 2021). Studies reporting individual-level effects of pharmacologic and/or surgical interventions in monogenic IR were eligible. Individual data were extracted and duplicates were removed. Outcomes were analysed for each gene and intervention, and in aggregate for partial, generalised and all lipodystrophy. RESULTS: 10 non-randomised experimental studies, 8 case series, and 23 case reports meet inclusion criteria, all rated as having moderate or serious risk of bias. Metreleptin use is associated with the lowering of triglycerides and haemoglobin A1c (HbA1c) in all lipodystrophy (n = 111), partial (n = 71) and generalised lipodystrophy (n = 41), and in LMNA, PPARG, AGPAT2 or BSCL2 subgroups (n = 72,13,21 and 21 respectively). Body Mass Index (BMI) is lowered in partial and generalised lipodystrophy, and in LMNA or BSCL2, but not PPARG or AGPAT2 subgroups. Thiazolidinediones are associated with improved HbA1c and triglycerides in all lipodystrophy (n = 13), improved HbA1c in PPARG (n = 5), and improved triglycerides in LMNA (n = 7). In INSR-related IR, rhIGF-1, alone or with IGFBP3, is associated with improved HbA1c (n = 17). The small size or absence of other genotype-treatment combinations preclude firm conclusions. CONCLUSIONS: The evidence guiding genotype-specific treatment of monogenic IR is of low to very low quality. Metreleptin and Thiazolidinediones appear to improve metabolic markers in lipodystrophy, and rhIGF-1 appears to lower HbA1c in INSR-related IR. For other interventions, there is insufficient evidence to assess efficacy and risks in aggregated lipodystrophy or genetic subgroups.Wellcome TrustWellcome Trus
- …