12 research outputs found

    Mini-dystrophin Expression Down-regulates IP3-mediated Calcium Release Events in Resting Dystrophin-deficient Muscle Cells

    Get PDF
    We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling

    Quantitative phase imaging to study transmembrane water fluxes regulated by CFTR and AQP3 in living human airway epithelial CFBE cells and CHO cells

    No full text
    International audienceIn epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR. We were able to detect phase variations during osmotic challenges and confirmed that cellular volume changes reflecting water fluxes can be detected with QWLSI. Forskolin stimulation activated a phase increase in all CFBE and CHO cell types. This phase variation was due to cellular volume decrease and intracellular refractive index increase and was completely blocked by mercury, suggesting an activation of a cAMP-dependent water efflux mediated by an endogenous aquaporin (AQP). AQP3 mRNAs, not AQP1, AQP4 and AQP5 mRNAs, were detected by RT-PCR in CFBE cells. Readdressing the F508del-CFTR protein to the cell surface with VX-809 increased the detected water efflux in CHO but not in CFBE cells. However, VX-770, a potentiator of CFTR function, failed to further increase the water flux in either G551D-CFTR or VX-809-corrected F508del-CFTR expressing cells. Our results show that QWLSI could be a suitable technique to study water transport in living cells. We identified a CFTR and cAMP-dependent, mercury-sensitive water transport in airway epithelial and CHO cells that might be due to AQP3. This water transport appears to be affected when CFTR is mutated and independent of the chloride channel function of CFTR

    Phagocytosis by Sertoli Cells: Analysis of Main Phagocytosis Steps by Confocal and Electron Microscopy

    No full text
    International audienceSertoli cells were discovered in the seminiferous tubules by Enrico Sertoli in 1865 (Morgagni 7:31-33, 1865). Intense phagocytosis is, in the context of spermatogenesis cycle, morphologically the most noticeable function of Sertoli cells. In this chapter the major principles of phagocytosis machinery and its specificities in the seminiferous tubules will be briefly reviewed, guidelines of analysis of main phagocytosis steps by confocal and transmission electron microscopy will be described, and a simplified method to assess phagocytosis rate in routine experiments will be given

    Implication of actin in the uptake of sucrose and valine in the tap root and leaf of sugar beet

    No full text
    International audienceActin microfilaments (F‐actin) are major components of the cytoskeleton essential for many cellular dynamic processes (vesicle trafficking, cytoplasmic streaming, organelle movements). The aim of this study was to examine whether cortical actin microfilaments might be implicated in the regulation of nutrient uptake in root and leaf cells of Beta vulgaris. Using antibodies raised against actin and the AtSUC1 sucrose transporter, immunochemical assays demonstrated that the expression of actin and a sucrose transporter showed different characteristics, when detected on plasma membrane vesicles (PMVs) purified from roots and from leaves. The in situ immunolabeling of actin and AtSUC1 sites in PMVs and tissues showed their close proximity to the plasma membrane. Using co‐labeling in protoplasts, actin and sucrose transporters were localized along the internal border and in the outermost part of the plasma membrane, respectively. This respective membrane co‐localization was confirmed on PMVs and in tissues using transmission electronic microscopy. The possible functional role of actin in sucrose uptake (and valine uptake, comparatively) by PMVs and tissues from roots and leaves was examined using the pharmacological inhibitors, cytochalasin B (CB), cytochalasin D (CD), and phalloidin (PH). CB and CD inhibited the sucrose and valine uptake by root tissues in a concentration‐dependent manner above 1 ÎŒM, whereas PH had no such effect. Comparatively, the toxins inhibited the sucrose and valine uptake in leaf discs to a lesser extent. The inhibition was not due to a hindering of the proton pumping and H+‐ATPase catalytic activity determined in PMVs incubated in presence of these toxins

    The rescue of F508del-CFTR by elexacaftor/tezacaftor/ivacaftor (Trikafta) in human airway epithelial cells is underestimated due to the presence of ivacaftor

    No full text
    International audienceTrikafta, currently the leading therapeutic in cystic fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor. We studied F508del-CFTR function, maturation and membrane localisation by Ussing chamber and whole-cell patch-clamp recordings, Western blot and immunolocalisation experiments. With human primary airway epithelial cells and the cell lines CFBE and BHK expressing F508del, we found that, whereas the combination elexacaftor/tezacaftor/ivacaftor was efficient in rescuing F508del-CFTR abnormal maturation, apical membrane location and function, the presence of ivacaftor limits these effects. The basal F508del-CFTR short-circuit current was significantly increased by elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor compared to other correctors and nontreated cells, an effect dependent on ivacaftor and cAMP. These results suggest that the level of the basal F508del-CFTR current might be a marker for correction efficacy in CF cells. When cells were treated with ivacaftor combined to any correctors, the F508del-CFTR current was unresponsive to the subsequently acute addition of ivacaftor, unlike the CFTR (cystic fibrosis transmembrane conductance regulator) potentiators genistein and Cact-A1 which increased elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor-corrected F508del-CFTR currents. These findings show that ivacaftor reduces the correction efficacy of Trikafta. Thus, combining elexacaftor/tezacaftor with a different potentiator might improve the therapeutic efficacy for treating CF patients

    Myelinosomes act as natural secretory organelles in Sertoli cells to prevent accumulation of aggregate-prone mutant Huntingtin and CFTR

    No full text
    International audienceInappropriate deposition of insoluble aggregates of proteins with abnormal structures is a hallmark of affected organs in protein aggregation disease. Very rare, affected organs avoid aggregation naturally. This concerns atrophic testis in Huntington disease (HD). We aimed to understand how HD testis avoids aggregation. Using HD model R6/1 mice, we demonstrate that affected testis contain rare organelles myelinosomes. Myelinosomes secreted from testis somatic TM4 Sertoli cells provide the release of aggregate-prone mutant, but not normal Huntingtin (Htt) exon1. Myelinosomes also support the release of other aggregate-prone mutant protein responsible for cystic fibrosis (CF), F508delCFTR. The traffic and discharge of myelinosomes is facilitated by multivesicular bodies (MVB)s. Inhibition of MVB excretion induced reversible retention of both misfolded proteins inside TM4 Sertoli cells. We propose that myelinosome-mediated elimination of mutant proteins is an unusual secretory process allowing Sertoli cells getting rid of misfolded proteins to avoid aggregation and to maintain cell proteostasis

    Modulation of cellular membrane properties as a potential therapeutic strategy to counter lipointoxication in obstructive pulmonary diseases

    No full text
    International audienceMaintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organellebased processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs

    Interaction of grape ASR proteins with a DREB transcription factor in the nucleus

    Get PDF
    AbstractASR proteins (abscissic acid, stress, ripening induced) are involved in plant responses to developmental and environmental signals but their biological functions remain to be elucidated. Grape ASR gene (VvMSA) encodes a new transcription factor regulating the expression of a glucose transporter. Here, we provide evidence for some polymorphism of grape ASRs and their identification as chromosomal non-histone proteins. By the yeast two-hybrid approach, a protein partner of VvMSA is isolated and characterized as an APETALA2 domain transcription factor. Interaction of the two proteins is further demonstrated by the BiFC approach and the exclusive nuclear localization of the heterodimer is visualized.Structured summaryMINT-6743067: VvMSA (uniprotkb:Q94G23) and VvDREB (uniprotkb:A6XA90) physically interact (MI:0218) by bimolecular fluorescence complementation (MI:0809)MINT-6743043: VvMSA (uniprotkb:Q94G23) physically interacts (MI:0218) with VvDREB (uniprotkb:A6XA90) by two hybrid (MI:0018

    A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates

    Get PDF
    International audiencePhagocytosis and autophagy are typically dedicated to degradation of substrates of extrinsic and intrinsic origins respectively. Although overlaps between phagocytosis and autophagy were reported, the use of autophagy for ingested substrate degradation by nonprofessional phagocytes has not been described. Blood-separated tissues use their tissue-specific nonprofessional phagocytes for homeostatic phagocytosis. In the testis, Sertoli cells phagocytose spermatid residual bodies produced during germ cell differentiation. In the retina, pigmented epithelium phagocytoses shed photoreceptor tips produced during photoreceptor renewal. Spermatid residual bodies and shed photoreceptor tips are phosphatidylserine-exposing substrates. Activation of the tyrosine kinase receptor MERTK, which is implicated in phagocytosis of phosphatidylserine-exposing substrates, is a common feature of Sertoli and retinal pigmented epithelial cell phagocytosis. The major aim of our study was to investigate to what extent phagocytosis by Sertoli cells may be tissue specific. We analyzed in Sertoli cell cultures that were exposed to either spermatid residual bodies (legitimate substrates) or retina photoreceptor outer segments (illegitimate substrates) the course of the main phagocytosis stages. We show that whereas substrate binding and ingestion stages occur similarly for legitimate or illegitimate substrates, the degradation of illegitimate but not of legitimate substrates triggers autophagy as evidenced by the formation of double-membrane wrapping, MAP1LC3A-II/LC3-II clustering, SQSTM1/p62 degradation, and by marked changes in ATG5, ATG9 and BECN1/Beclin 1 protein expression profiles. The recruitment by nonprofessional phagocytes of autophagy for the degradation of ingested cell-derived substrates is a novel feature that may be of major importance for fundamentals of both apoptotic substrate clearance and tissue homeostasis
    corecore