86 research outputs found

    Microbiome dataset from a marine recirculating aquaculture system (RAS) for salmon post-smolt production in Norway

    Get PDF
    A marine aquaculture recycling system (RAS) for the production of post-smolt was monitored for microbial community structures during the first year of operation. Sample material was obtained monthly from the biofilter biofilm carriers, the production water (tank 3), the fish skin (tank 3) and the tank 3 wall biofilm. Additional samples were taken during outbreaks of fish skin wounds, washing of the plant, UV filtration of the inlet water and from various wall biofilms. Samples for depth profiles from all fish tanks were also collected. The sampling tools were a ladle for capturing biofilter biofilm carriers, toothbrushes for wall biofilm capture, filters for capture of water microbes and scalpels for skin tissue slicing. The sampling times were indicated by the production cycle number (cycle 2-5) and the week number within the cycle (W). Prior to bacterial community analysis, the stored samples were exposed to cell lysis and extraction of environmental DNA by commercial kits. All samples were subjected for PCR amplification of 16S rDNA sequences for library formations and prepared for Ion Torrent technology, which sequences 250 bp fragments. A total of 1.1 million reads were obtained from the 100 RAS samples analysed. The process from Ion Torren analysis to library involved bioinformatics steps with sorting, filtering, adjustment and taxonomic identification, and the final output was shown in a table as operational taxonomic units (OTUs) and relative abundance at different sampling sites and sampling time points. Of a total of 450 taxonomically assigned OTUs, 45% were classified at genus level. The 16S library raw data are deposited in the Mendeley data repository and cited in this Data in Brief article co-submitted with the article “Microbial colonization and stability in a marine post-smolt RAS inoculated with a commercial starter culture.” [1]. So far, the raw data are referenced in four more publications in progress. These cover microbial shifts and enrichments between sampling times, sulfur cycling, “in vivo biofilm” and identification of relatives of fish pathogens in RAS. All library sequences are available in GenBank with accession numbers MN890148-MN891672.publishedVersio

    Overwintering behaviour of yellow-stage European eel (Anguilla anguilla) in a natural marine fjord system

    Get PDF
    Like many animals, northern temperate eel can enter a hibernation-like state and become dormant during the winter. Knowledge of overwintering behaviour in eel is sparse and mainly based on anecdotal observations and a few experimental studies on thermal tolerance. We studied European eel (Anguilla anguilla) overwintering behaviour in a Skagerrak fjord in Southern Norway, during three consecutive years, using an array of acoustic receivers and acoustic tags with depth and temperature sensors. We obtained results from 55 yellow eel, of which 19 were studied for one winter, 35 for two winters and one for three winters. Dormancy was inferred to begin in September for the earliest individuals and lasted until May for the last, with the majority of eel dormant from at least late October–November until mid-April. The timing of dormancy was mainly related to photoperiod and less to temperature. More than 50% of eel became dormant when day length was 14 h. Approximately 10% of eel remained active during the winter and 31% of eel changed their pattern between consecutive years. Some dormant individuals exhibited activity periods that interrupted their dormancy. Eel in the outer fjord nearer the open sea became dormant before eel in the inner more freshwater part of the fjord, and were dormant longer.publishedVersio

    Tenacibaculosis in Norwegian Atlantic salmon (Salmo salar) cage-farmed in cold sea water is primarily associated with Tenacibaculum finnmarkense genomovar finnmarkense

    Get PDF
    Skin conditions associated with Tenacibaculum spp. constitute a significant threat to the health and welfare of sea-farmed Atlantic salmon (Salmo salar L.) in Norway. Fifteen presumptive tenacibaculosis outbreaks distributed along the Norwegian coast during the late winter and spring of 2018 were investigated. Bacteriological culture confirmed the presence of Tenacibaculum spp. Seventy-six isolates cultured from individual fish were selected and subjected to whole-genome sequencing and MALDI-TOF MS analysis. Average nucleotide identity and MALDI-TOF analyses confirmed the presence of T. finnmarkense and T. dicentrarchi, with further division of T. finnmarkense into genomovars (gv.) finnmarkense and ulcerans. Core genome multilocus sequence typing (cgMLST) and single-nucleotide polymorphism (SNP) analyses identified the presence of a genetically conserved cluster of gv. finnmarkense isolates against a background of relatively genetically diverse gv. finnmarkense and gv. ulcerans isolates in 13 of the 15 studied cases. This clustering strongly suggests a link between T. finnmarkense gv. finnmarkense and development of clinical tenacibaculosis in sea-farmed Norwegian salmon in the late winter and spring. Analysis of 25 Tenacibaculum isolates collected during the spring of 2019 from similar cases identified a similar distribution of genotypes. Low water temperatures were common to all cases, and most incidences involved relatively small fish shortly after sea transfer, suggesting that these fish are particularly predisposed to Tenacibaculum infection.publishedVersio

    MLVA genotyping of Moritella viscosa reveals serial emergence of novel, host-specific clonal complexes in Norwegian salmon farming

    Get PDF
    A Multi-Locus Variable number of tandem repeat Analysis (MLVA) genotyping scheme was developed for the epidemiological study of Moritella viscosa, which causes ‘winter ulcer’ predominantly in sea-reared Atlantic salmon (Salmo salar L.). The assay involves multiplex PCR amplification of six Variable Number of Tandem Repeat (VNTR) loci, followed by capillary electrophoresis and data interpretation. A collection of 747 spatiotemporally diverse M. viscosa isolates from nine fish species was analysed, the majority from farmed Norwegian salmon. MLVA distributed 76% of the isolates across three major clonal complexes (CC1, CC2 and CC3), with the remaining forming minor clusters and singletons. While 90% of the salmon isolates belong to either CC1, CC2 or CC3, only 20% of the isolates recovered from other fish species do so, indicating a considerable degree of host specificity. We further highlight a series of ‘clonal shifts’ amongst Norwegian salmon isolates over the 35-year sampling period, with CC1 showing exclusive predominance prior to the emergence of CC2, which was later supplanted by CC3, before the recent re-emergence of CC1. Apparently, these shifts have rapidly swept the entire Norwegian coastline and conceivably, as suggested by typing of a small number of non-Norwegian isolates, the Northeast Atlantic region as a whole.publishedVersio

    Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) protects against subsequent challenge with infectious hematopoietic necrosis virus (IHNV)

    Get PDF
    Abstract Infectious hematopoietic necrosis virus (IHNV) is endemic in farmed rainbow trout in continental Europe and in various salmonid fish species at the Pacific coast of North America. IHN has never occurred in European Atlantic salmon (Salmo salar) farms, but is considered as a major threat for the European salmon industry. Another virus, Piscine orthoreovirus (PRV), is widespread in the sea phase of Atlantic salmon, and is identified as the causative agent of heart and skeletal muscle inflammation. The aim of this study was to investigate the interactions between a primary PRV infection and a secondary IHNV infection under experimental conditions. A PRV cohabitation challenge was performed with Atlantic salmon. At peak of PRV viremia the fish were challenged by immersion with an IHNV genogroup E isolate. Clinical signs and morbidity were monitored. Target organs were sampled at selected time points to assess viral loads of both pathogens. Antiviral immune response and presence of histopathological findings were also investigated. Whereas the PRV-negative/IHNV positive group suffered significant decrease in survival caused by IHNV, the PRV infected groups did not suffer any morbidity and showed negligible levels of IHNV infection. Antiviral response genes were induced, as measured in spleen samples, from PRV infected fish prior to IHNV challenge. In conclusion, PRV-infection protects Atlantic salmon against IHNV infection and morbidity, most likely by inducing a protective innate antiviral response

    Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production

    Get PDF
    BACKGROUND: Escherichia coli infections known as colibacillosis constitute a considerable challenge to poultry farmers worldwide, in terms of decreased animal welfare and production economy. Colibacillosis is caused by avian pathogenic E. coli (APEC). APEC strains are extraintestinal pathogenic E. coli and have in general been characterized as being a genetically diverse population. In the Nordic countries, poultry farmers depend on import of Swedish broiler breeders which are part of a breeding pyramid. During 2014 to 2016, an increased occurrence of colibacillosis on Nordic broiler chicken farms was reported. The aim of this study was to investigate the genetic diversity among E. coli isolates collected on poultry farms with colibacillosis issues, using whole genome sequencing. METHODS: Hundred and fourteen bacterial isolates from both broilers and broiler breeders were whole genome sequenced. The majority of isolates were collected from poultry with colibacillosis on Nordic farms. Subsequently, comparative genomic analyses were carried out. This included in silico typing (sero- and multi-locus sequence typing), identification of virulence and resistance genes and phylogenetic analyses based on single nucleotide polymorphisms. RESULTS: In general, the characterized poultry isolates constituted a genetically diverse population. However, the phylogenetic analyses revealed a major clade of 47 closely related ST117 O78:H4 isolates. The isolates in this clade were collected from broiler chickens and breeders with colibacillosis in multiple Nordic countries. They clustered together with a human ST117 isolate and all carried virulence genes that previously have been associated with human uropathogenic E. coli. CONCLUSIONS: The investigation revealed a lineage of ST117 O78:H4 isolates collected in different Nordic countries from diseased broilers and breeders. The data indicate that the closely related ST117 O78:H4 strains have been transferred vertically through the broiler breeding pyramid into distantly located farms across the Nordic countries. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3415-6) contains supplementary material, which is available to authorized users

    Molecular and antigenic characterization of Piscine orthoreovirus (PRV) from rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Piscine orthoreovirus (PRV-1) causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). Recently, a novel PRV (formerly PRV-Om, here called PRV-3), was found in rainbow trout (Oncorhynchus mykiss) with HSMI-like disease. PRV is considered to be an emerging pathogen in farmed salmonids. In this study, molecular and antigenic characterization of PRV-3 was performed. Erythrocytes are the main target cells for PRV, and blood samples that were collected from experimentally challenged fish were used as source of virus. Virus particles were purified by gradient ultracentrifugation and the complete coding sequences of PRV-3 were obtained by Illumina sequencing. When compared to PRV-1, the nucleotide identity of the coding regions was 80.1%, and the amino acid identities of the predicted PRV-3 proteins varied from 96.7% (Ν1) to 79.1% (σ3). Phylogenetic analysis showed that PRV-3 belongs to a separate cluster. The region encoding σ3 were sequenced from PRV-3 isolates collected from rainbow trout in Europe. These sequences clustered together, but were distant from PRV-3 that was isolated from rainbow trout in Norway. Bioinformatic analyses of PRV-3 proteins revealed that predicted secondary structures and functional domains were conserved between PRV-3 and PRV-1. Rabbit antisera raised against purified virus or various recombinant virus proteins from PRV-1 all cross-reacted with PRV-3. Our findings indicate that despite different species preferences of the PRV subtypes, several genetic, antigenic, and structural properties are conserved between PRV-1 and-3

    Infection experiments with novel Piscine orthoreovirus from rainbow trout (Oncorhynchus mykiss) in salmonids

    Get PDF
    A new disease in farmed rainbow trout (Onchorhyncus mykiss) was described in Norway in 2013. The disease mainly affected the heart and resembled heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar L.). HSMI is associated with Piscine orthoreovirus (PRV), and a search for a similar virus in the diseased rainbow trout led to detection of a sequence with 85% similarity to PRV. This finding called for a targeted effort to assess the risk the new PRV-variant pose on farmed rainbow trout and Atlantic salmon by studying infection and disease pathogenesis, aiming to provide more diagnostic knowledge. Based on the genetic relationship to PRV, the novel virus is referred to as PRV-Oncorhynchus mykiss (PRV-Om) in contrast to PRV-Salmo salar (PRV-Ss). In experimental trials, intraperitoneally injected PRV-Om was shown to replicate in blood in both salmonid species, but more effectively in rainbow trout. In rainbow trout, the virus levels peaked in blood and heart of cohabitants 6 weeks post challenge, along with increased expression of antiviral genes (Mx and viperin) in the spleen, with 80-100% of the cohabitants infected. Heart inflammation was diagnosed in all cohabitants examined 8 weeks post challenge. In contrast, less than 50% of the Atlantic salmon cohabitants were infected between 8 and 16 weeks post challenge and the antiviral response in these fish was very low. From 12 weeks post challenge and onwards, mild focal myocarditis was demonstrated in a few virus-positive salmon. In conclusion, PRV-Om infects both salmonid species, but faster transmission, more notable antiviral response and more prominent heart pathology were observed in rainbow trout
    • …
    corecore