115 research outputs found

    Identification of rhabdoviral sequences in oropharyngeal swabs from German and Danish bats

    Get PDF
    BACKGROUND: In the frame of active lyssavirus surveillance in bats, oropharyngeal swabs from German (N = 2297) and Danish (N = 134) insectivorous bats were investigated using a newly developed generic pan-lyssavirus real-time reverse transcriptase PCR (RT-qPCR). FINDINGS: In total, 15 RT-qPCR positive swabs were detected. Remarkably, sequencing of positive samples did not confirm the presence of bat associated lyssaviruses but revealed nine distinct novel rhabdovirus-related sequences. CONCLUSIONS: Several novel rhabdovirus-related sequences were detected both in German and Danish insectivorous bats. The results also prove that the novel generic pan-lyssavirus RT-qPCR offers a very broad detection range that allows the collection of further valuable data concerning the broad and complex diversity within the family Rhabdoviridae

    Prion Infectivity and PrPBSE in the Peripheral and Central Nervous System of Cattle 8 Months Post Oral BSE Challenge

    Get PDF
    After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous studies were focused on later time points after oral exposure of animals that were already 4 to 6 months old when challenged. In contrast, in this present study, we have orally inoculated 4 to 6 weeks old unweaned calves with high doses of BSE to identify any possible BSE infectivity and/or PrPBSE in peripheral nervous tissues during the first eight months postinoculation (mpi). For the detection of BSE infectivity, we used a bovine PrP transgenic mouse bioassay, while PrPBSE depositions were analyzed by immunohistochemistry (IHC) and by protein misfolding cyclic amplification (PMCA). We were able to show that as early as 8 mpi the thoracic spinal cord as well as the parasympathetic nodal ganglion of these animals contained PrPBSE and BSE infectivity. This shows that the centripetal prion spread starts early after challenge at least in this age group, which represents an essential piece of information for the risk assessments for food, feed, and pharmaceutical products produced from young calves

    BSE infectivity in jejunum, ileum and ileocaecal junction of incubating cattle

    Get PDF
    To establish bovine spongiform encephalopathy (BSE) public health protection measures it is important to precisely define the cattle tissues considered as specified risk materials (SRM). To date, in pre-clinical BSE infected cattle, no evidence of the BSE agent had been found in the gut outside of the ileal Peyer's Patches. This study was undertaken to determine when and where the pathological prion protein (PrPSc) and/or BSE infectivity can be found in the small intestine of cattle 4 to 6 months of age, orally challenged with BSE. Samples of the jejunum, the ileum and the ileocaecal junction from 46 BSE infected cattle, culled from 1 up to 44 months post infection (mpi) were examined by immunohistochemistry. Samples from cattle 8 mpi to 20 mpi were additionally studied by PTA Western blot, rapid tests, and by mouse (TgbovXV) bioassay. In doing so nearly all of the cattle, from 4 up to 44 mpi, had detectable amounts of PrPSc and/or infectivity in the distal ileum. In the distal ileum clear time-dependent variations were visible concerning the amount of PrPSc, the tissue structures affected, and the cells involved. BSE infectivity was found not only in the ileum and ileocaecal junction but also in the jejunum. The systematic approach of this study provides new data for qualitative and quantitative risk assessments and allows defining bovine SRM more precisely

    2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales

    Get PDF
    In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.Instituto de Patología VegetalFil: Kuhn, Jens H. National Institute of Allergy and Infectious Diseases. National Institutes of Health. Integrated Research Facility at Fort Detrick; Estados UnidosFil: Adkins, Scott. US Horticultural Research Laboratory. United States Department of Agriculture. Agricultural Research Service; Estados UnidosFil: Alkhovsky, Sergey V. Ministry of Health of Russian Federation. National Center on Epidemiology and Microbiology .D.I. Ivanovsky Institute of Virology of N.F. Gamaleya; RusiaFil: Avšič-Županc, Tatjana. University of Ljubljana. Faculty of Medicine. Institute of Microbiology and Immunology; EsloveniaFil: Ayllón, María A. Universidad Politécnica de Madrid. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria.Centro de Biotecnología y Genómica de Plantas; EspañaFil: Ayllón, María A. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. Departamento de Biotecnología-Biología Vegetal; EspañaFil: Bahl, Justin. University of Georgia. Center for Ecology of Infectious Diseases. Insitute of Bioinformatics. Department of Infectious Diseases. Department of Epidemiology and Biostatistics; Estados UnidosFil: Balkema-Buschmann, Anne. Friedrich-Loeffler-Institut. Institute of Novel and Emerging Infectious Diseases; AlemaniaFil: Ballinger, Matthew J. Mississippi State University. Department of Biological Sciences; Estados UnidosFil: Bandte, Martina. Humboldt-Universität zu Berlin. Faculty of Life Sciences. Division Phytomedicine; AlemaniaFil: Beer, Martin. Friedrich-Loeffler-Institut. Institute of Diagnostic Virology; AlemaniaFil: Bejerman, Nicolas Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Bejerman, Nicolas Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Lodden Økland, Arnfnn. Pharmaq Analytiq; Norueg

    Inhibitors of dihydroorotate dehydrogenase cooperate with molnupiravir and N4-hydroxycytidine to suppress SARS-CoV-2 replication

    Get PDF
    Funding Information: We thank Thorsten Wolff, Daniel Bourquain, Jessica Schulz, and Christian Mache from the Robert-Koch Institute and Martin Beer from the Friedrich Loeffler Institute (FLI) for providing isolates of SARS-CoV-2 variants. We thank Anna Kraft and Gabriele Czerwinski (both FLI) for support in the preparation of samples for pathology, and Catherine Hambly (University of Aberdeen) for help with daily energy expenditure measurements. We would like to thank Cathrin Bierwirth (University Medical Center Göttingen), Isabell Schulz, Anne-Kathrin Donner, and Frank-Thorben Peters for excellent technician assistance and Jasmin Fertey and Alexandra Rockstroh for providing the virus stocks for the mice experiment (Fraunhofer Institute IZI Leipzig). We acknowledge support by the Open Access Publication Funds of the Göttingen University. KMS was a member of the Göttingen Graduate School GGNB during this work. This work was funded by the COVID-19 Forschungsnetzwerk Niedersachsen (COFONI) to MD, by the Federal Ministry of Education and Research Germany ( Bundesministerium für Bildung und Forschung; BMBF ; OrganSARS , 01KI2058 ) to SP and TM, and by a grant of the Max Planck Foundation to DG. Declaration of interests AS, HK, EP, and DV are employees of Immunic AG and own shares and/or stock-options of the parent company of Immunic AG, Immunic Inc. Some of the Immunic AG employees also hold patents for the Immunic compounds described in this manuscript (WO2012/001,148, WO03006425). KMS, AD, and MD are employees of University Medical Center Göttingen, which has signed a License Agreement with Immunic AG covering the combination of DHODH inhibitors and nucleoside analogs to treat viral infections, including COVID-19 (inventors: MD, KMS, and AD). The other authors declare no conflict of interest.Peer reviewedPublisher PD

    ICTV Virus Taxonomy Profile: Paramyxoviridae

    Get PDF
    The family Paramyxoviridae consists of large enveloped RNA viruses infecting mammals, birds, reptiles and fish. Many paramyxoviruses are host-specific and several, such as measles virus, mumps virus, Nipah virus, Hendra virus and several parainfluenza viruses, are pathogenic for humans. The transmission of paramyxoviruses is horizontal, mainly through airborne routes; no vectors are known. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the family Paramyxoviridae. which is available at ictv.global/report/paramyxoviridae

    Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform Encephalopathy

    Get PDF
    The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrPres type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance

    Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)

    Get PDF
    In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV
    corecore