12 research outputs found

    Efficacy and safety of growth hormone treatment in children with short stature: the Italian cohort of the GeNeSIS clinical study

    Get PDF
    Purpose: We examined auxological changes in growth hormone (GH)-treated children in Italy using data from the Italian cohort of the multinational observational Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS) of pediatric patients requiring GH treatment. Methods: We studied 711 children (median baseline age 9.6 years). Diagnosis associated with short stature was as determined by the investigator. Height standard deviation score (SDS) was evaluated yearly until final or near-final height (n = 78). Adverse events were assessed in all GH-treated patients. Results: The diagnosis resulting in GH treatment was GH deficiency (GHD) in 85.5 % of patients, followed by Turner syndrome (TS 6.6 %). Median starting GH dose was higher in patients with TS (0.30 mg/kg/week) than patients with GHD (0.23 mg/kg/week). Median (interquartile range) GH treatment duration was 2.6 (0.6\u20133.7) years. Mean (95 % confidence interval) final height SDS gain was 2.00 (1.27\u20132.73) for patients with organic GHD (n = 18) and 1.19 (0.97\u20131.40) for patients with idiopathic GHD (n = 41), but lower for patients with TS, 0.37 ( 120.03 to 0.77, n = 13). Final height SDS was > 122 for 94 % of organic GHD, 88 % of idiopathic GHD and 62 % of TS patients. Mean age at GH start was lower for organic GHD patients, and treatment duration was longer than for other groups, resulting in greater mean final height gain. GH-related adverse events occurred mainly in patients diagnosed with idiopathic GHD. Conclusions: Data from the Italian cohort of GeNeSIS showed auxological changes and safety of GH therapy consistent with results from international surveillance databases

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    Quantitative neuroproteomics: classical and novel tools for studying neural differentiation and function

    Full text link
    Mechanisms underlying neural stem cell proliferation, differentiation and maturation play a critical role in the formation and wiring of neuronal connections. This process involves the activation of multiple serial events, which guide the undifferentiated cells to different lineages via distinctive developmental programs, forming neuronal circuits and thus shaping the adult nervous system. Furthermore, alterations within these strictly regulated pathways can lead to severe neurological and psychiatric diseases. In this framework, the investigation of the high dynamic protein expression changes and other factors affecting protein functions, for example post-translational modifications, the alterations of protein interaction networks, is of pivotal importance for the understanding of the molecular mechanisms responsible for cell differentiation. More recently, proteomic studies in neuroscience ("neuroproteomics") are receiving increased interest for the primary understanding of the regulatory networks underlying neuronal differentiation processes. Besides the classical two-dimensional-based proteomic strategies, the emerging platforms for LC-MS shotgun proteomic analysis hold great promise in unraveling the molecular basis of neural stem cell differentiation. In this review, recent advancements in label-free LC-MS quantitative neuroproteomics are highlighted as a new tool for the study of neural differentiation and functions, in comparison to mass spectrometry-based labeling approaches. The more commonly used protein profiling strategies and model systems for the analysis of neural differentiation are also discussed, along with the challenging proteomic approaches aimed to analyze the nervous system-specific organelles, the neural cells secretome and the specific protein interaction networks

    Secretome profiling of differentiated neural mes-c-myc A1 cell line endowed with stem cell properties

    Full text link
    Neural stem cell proliferation and differentiation play a crucial role in the formation and wiring of neuronal connections forming neuronal circuits. During neural tissues development, a large diversity of neuronal phenotypes is produced from neural precursor cells. In recent years, the cellular and molecular mechanisms by which specific types of neurons are generated have been explored with the aim to elucidate the complex events leading to the generation of different phenotypes via distinctive developmental programs that control self-renewal, differentiation, and plasticity. The extracellular environment is thought to provide instructive influences that actively induce the production of specific neuronal phenotypes. In this work, the secretome profiling of differentiated neural mes-c-myc A1 (A1) cell line endowed with stem cell properties was analyzed by applying a shotgun LC-MS/MS approach. The results provide a list of secreted molecules with potential relevance for the functional and biological features characterizing the A1 neuronal phenotype. Proteins involved in biological processes closely related to nervous system development including neurites growth, differentiation of neurons and axonogenesis were identified. Among them, proteins belonging to extracellular matrix and cell-adhesion complexes as well as soluble factors with well established neurotrophic properties were detected. The presented work provides the basis to clarify the complex extracellular protein networks implicated in neuronal differentiation and in the acquisition of the neuronal phenotype. This article is part of a Special Issue entitled: An Updated Secretome
    corecore