5 research outputs found

    Association of the Epithelial-to-Mesenchymal Transition (EMT) Phenotype with Responsiveness to the p21-Activated Kinase Inhibitor, PF-3758309, in Colon Cancer Models

    No full text
    The p21-activated kinase (PAK) family of serine/threonine kinases, which are overexpressed in several cancer types, are critical mediators of cell survival, motility, mitosis, transcription, and translation. In the study presented here we utilized a panel of CRC cell lines to identify potential biomarkers of sensitivity or resistance that may be used to individualize therapy to the PAK inhibitor PF-03758309. We observed a wide range of proliferative responses in the CRC cell lines exposed to PF-03758309, this response was recapitulated in other phenotypic assays such as anchorage-independent growth, three dimensional tumor spheroid formation, and migration. Interestingly, we observed that cells most sensitive to PF-03758309 exhibited up regulation of genes associated with a mesenchymal phenotype (CALD1, VIM, ZEB1) and cells more resistant had an up regulation of genes associated with an epithelial phenotype (CLDN2, CDH1, CLDN3, CDH17) allowing us to derive an epithelial-to-mesenchymal transition (EMT) gene signature for this agent. We assessed the functional role of EMT-associated genes in mediating responsiveness to PF-3758309, by targeting known genes and transcriptional regulators of EMT. We observed that suppression of genes associated with the mesenchymal phenotype conferred resistance to PF-3758309, in vitro and in vivo. These results indicate that PAK inhibition is associated with a unique response phenotype in CRC and that further studies should be conducted to facilitate both patient selection and rational combination strategies with these agents

    Combined inhibition of MEK and Aurora A kinase in KRAS/PIK3CA double-mutant colorectal cancer models

    No full text
    Aurora A kinase and MEK inhibitors induce different, and potentially complementary, effects on the cell cycle of malignant cells, suggesting a rational basis for utilizing these agents in combination. In this work, the combination of an Aurora A kinase and MEK inhibitor was evaluated in pre-clinical colorectal cancer models, with a focus on identifying a subpopulation in which it might be most effective. Increased synergistic activity of the drug combination was identified in colorectal cancer cell lines with concomitant KRAS and PIK3CA mutations. Anti-proliferative effects were observed upon treatment of these double-mutant cell lines with the drug combination, and tumor growth inhibition was observed in double-mutant human tumor xenografts, though effects were variable within this subset. Additional evaluation suggests that degree of G2/M delay and p53 mutation status affect apoptotic activity induced by combination therapy with an Aurora A kinase and MEK inhibitor in KRAS and PIK3CA mutant colorectal cancer. Overall, in vitro and in vivo testing was unable to identify a subset of colorectal cancer that was consistently responsive to the combination of a MEK and Aurora A kinase inhibitor

    The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags.

    No full text
    Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define approximately 23,500 genes, of which only approximately 1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers
    corecore