2 research outputs found

    Novel CaO–SiO2–P2O5 Nanobioglass Activated with Hafnium Phthalocyanine

    No full text
    Bioactive glasses are materials which can be used in medicine for regeneration of hard and soft tissues. Their functionalization with active molecules or addition to composites broaden significantly the possible range of glass applications. Hereby, we describe photoactive nanoparticles of CaO–SiO2–P2O5 glass modified with dichlorohafnium (IV) phthalocyanine. The low-temperature, sol–gel based reverse micelle method was proposed for the synthesis, which allowed introduction of metal organic molecules into the glass composition. The morphology, structure, and composition of the material was described showing that spherical but agglomerated glass nanoparticles (size below 100 nm) were obtained in the ternary system. It was also shown that optical properties of the phthalocyanine complex were maintained after immobilization of the dye in the glass. The photoluminescence and generation of singlet oxygen molecules were observed under the light irradiation of the glass

    Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity

    No full text
    In search of an effective antibacterial agent that is useful in photodynamic therapy, new derivatives of zirconium(IV) phthalocyanine (ZrPc) complexes were obtained and linked to graphite oxide flakes. In the syntheses of ZrPc derivatives, two bis-axially substituted ligands with terminal amino group and different lengths of linear carbon chain (C4 in 4-aminobutyric acid or C11 in 11-aminoundecanoic acid) were used. The optical properties (absorption and photoluminescence spectra) of ZrPcs and the composites were examined. Broadband red–near-infrared lamp was tested as an external stimulus to activate ZrPcs and the composites. Optical techniques were used to show generation of singlet oxygen during irradiation. Considering the application of graphite oxide-based materials as bacteriostatic photosensitive additives for endodontic treatment of periapical tissue inflammation, the antibacterial activity was determined on one Escherichia coli strain isolated directly from an infected root canal of a human tooth and one strain with silver and antibiotic resistance. Looking at the obtained results, modified levels of activity toward different bacterial strains are discussed
    corecore