16 research outputs found

    Methodological derivation of the eikonal equation

    Get PDF
    Usually, when working with the eikonal equation, reference is made to its derivation in the monograph by Born and Wolf. The derivation of this equation was done rather carelessly. Understanding this derivation requires a certain number of implicit assumptions. For a better understanding of the eikonal approximation and for methodological purposes, the authors decided to repeat the derivation of the eikonal equation, explicating all possible assumptions. Methodically, the following algorithm for deriving the eikonal equation is proposed. The wave equation is derived from Maxwell’s equation. In this case, all conditions are explicitly introduced under which it is possible to do this. Further, from the wave equation, the transition to the Helmholtz equation is carried out. From the Helmholtz equation, with the application of certain assumptions, a transition is made to the eikonal equation. After analyzing all the assumptions and steps, the transition from the Maxwell’s equations to the eikonal equation is actually implemented. When deriving the eikonal equation, several formalisms are used. The standard formalism of vector analysis is used as the first formalism. Maxwell’s equations and the eikonal equation are written as three-dimensional vectors. After that, both the Maxwell’s equations and the eikonal equation use the covariant 4-dimensional formalism. The result of the work is a methodically consistent description of the eikonal equation

    Chronology of the development of Active Queue Management algorithms of RED family. Part 1: from 1993 up to 2005

    Get PDF
    This work is the first part of a large bibliographic review of active queue management algorithms of the Random Early Detection (RED) family, presented in the scientific press from 1993 to 2023. The first part will provide data on algorithms published from 1993 to 2005

    Π’Π΅Π½Π·ΠΎΡ€ проницаСмостСй Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ МаксвСлла

    No full text
    It is generally accepted that the main obstacle to the application of Riemannian geometrization of Maxwell’s equations is an insufficient number of parameters defining a geometrized medium. In the classical description of the equations of electrodynamics in the medium, a constitutive tensor with 20 components is used. With Riemannian geometrization, the constitutive tensor is constructed from a Riemannian metric tensor having 10 components. It is assumed that this discrepancy prevents the application of Riemannian geometrization of Maxwell’s equations. It is necessary to study the scope of applicability of the Riemannian geometrization of Maxwell’s equations. To determine whether the lack of components is really critical for the application of Riemannian geometrization. To determine the applicability of Riemannian geometrization, the most common variants of electromagnetic media are considered. The structure of the dielectric and magnetic permittivity is written out for them, the number of significant components for these tensors is determined. Practically all the considered types of electromagnetic media require less than ten parameters to describe the constitutive tensor. In the Riemannian geometrization of Maxwell’s equations, the requirement of a single impedance of the medium is critical. It is possible to circumvent this limitation by moving from the complete Maxwell’s equations to the approximation of geometric optics. The Riemannian geometrization of Maxwell’s equations is applicable to a wide variety of media types, but only for approximating geometric optics.БчитаСтся, Ρ‡Ρ‚ΠΎ основным прСпятствиСм ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла являСтся нСдостаточноС количСство ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π·Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡƒΡŽ срСду. ΠŸΡ€ΠΈ классичСском описании ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ элСктродинамики Π² срСдС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚Π΅Π½Π·ΠΎΡ€ проницаСмостСй, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ 20 ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚. ΠŸΡ€ΠΈ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Π΅Π½Π·ΠΎΡ€ проницаСмостСй строится ΠΈΠ· Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠ³ΠΎ мСтричСского Ρ‚Π΅Π½Π·ΠΎΡ€Π°, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 10 ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½ΠΎΠ΅ нСсоотвСтствиС ΠΌΠ΅ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π»ΠΈ нСдостаток ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ являСтся критичСским для примСнСния Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла. Для опрСдСлСния области примСнимости Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ рассмотрСны Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространённыС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ элСктромагнитных срСд. Для Π½ΠΈΡ… выписана структура диэлСктричСской ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ проницаСмостСй, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ количСство Π·Π½Π°Ρ‡Π°Ρ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ для этих Ρ‚Π΅Π½Π·ΠΎΡ€ΠΎΠ². Показано, Ρ‡Ρ‚ΠΎ практичСски всС рассмотрСнныС Ρ‚ΠΈΠΏΡ‹ элСктромагнитных срСд Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ ΠΌΠ΅Π½Π΅Π΅ дСсяти ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² для описания Ρ‚Π΅Π½Π·ΠΎΡ€Π° проницаСмостСй. ΠŸΡ€ΠΈ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла критичСским являСтся Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ импСданса срСды. ΠžΠ±ΠΎΠΉΡ‚ΠΈ Π΄Π°Π½Π½ΠΎΠ΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Ρ‘ΠΌ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΎΡ‚ ΠΏΠΎΠ»Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла ΠΊ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡŽ гСомСтричСской ΠΎΠΏΡ‚ΠΈΠΊΠΈ. Показано, Ρ‡Ρ‚ΠΎ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²Π° гСомСтризация ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠ° для большого разнообразия Ρ‚ΠΈΠΏΠΎΠ² срСды, Π½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для приблиТСния гСомСтричСской ΠΎΠΏΡ‚ΠΈΠΊΠΈ

    ВозмоТности языка Julia для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ статистичСских Π΄Π°Π½Π½Ρ‹Ρ…

    No full text
    The Julia programming language is a specialized language for scientific computing. It is relatively new, so most of the libraries for it are in the active development stage. In this article, the authors consider the possibilities of the language in the field of mathematical statistics. Special emphasis is placed on the technical component, in particular, the process of installing and configuring the software environment is described in detail. Since users of the Julia language are often not professional programmers, technical issues in setting up the software environment can cause difficulties that prevent them from quickly mastering the basic features of the language. The article also describes some features of Julia that distinguish it from other popular languages used for scientific computing. The third part of the article provides an overview of the two main libraries for mathematical statistics. The emphasis is again on the technical side in order to give the reader an idea of the general possibilities of the language in the field of mathematical statistics.Π―Π·Ρ‹ΠΊ программирования Julia являСтся спСциализированным языком для Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… вычислСний. Π―Π·Ρ‹ΠΊ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ, поэтому Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊ для Π½Π΅Π³ΠΎ находится Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ стадии Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π°Π²Ρ‚ΠΎΡ€Ρ‹ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ возмоТности примСнСния языка Π² области матСматичСской статистики. ΠžΡΠΎΠ±Ρ‹ΠΉ Π°ΠΊΡ†Π΅Π½Ρ‚ дСлаСтся Π½Π° тСхничСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ, Π² частности ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ описываСтся процСсс установки ΠΈ настройки ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ окруТСния. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΠΈ языка Julia Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ программистами, тСхничСскиС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π² настройкС ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ окруТСния ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ Ρƒ Π½ΠΈΡ… трудности, ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ быстрому освоСнию Π±Π°Π·ΠΎΠ²Ρ‹Ρ… возмоТностСй языка. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ особСнности Julia, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ Π΅Π³ΠΎ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… популярных языков, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… для Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… вычислСний. Π’Π°ΠΊΠΆΠ΅ даётся ΠΎΠ±Π·ΠΎΡ€ Π΄Π²ΡƒΡ… основных Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊ для матСматичСской статистики. Π£ΠΏΠΎΡ€ ΠΎΠΏΡΡ‚ΡŒ-Ρ‚Π°ΠΊΠΈ дСлаСтся Π½Π° тСхничСской сторонС, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Π°Ρ‚ΡŒ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΡŽ прСдставлСниС ΠΎΠ± ΠΎΠ±Ρ‰ΠΈΡ… возмоТностях языка Π² области матСматичСской статистики
    corecore