15 research outputs found
Plasticity and dystonia: a hypothesis shrouded in variability.
Studying plasticity mechanisms with Professor John Rothwell was a shared highlight of our careers. In this article, we discuss non-invasive brain stimulation techniques which aim to induce and quantify plasticity, the mechanisms and nature of their inherent variability and use such observations to review the idea that excessive and abnormal plasticity is a pathophysiological substrate of dystonia. We have tried to define the tone of our review by a couple of Professor John Rothwell's many inspiring characteristics; his endless curiosity to refine knowledge and disease models by scientific exploration and his wise yet humble readiness to revise scientific doctrines when the evidence is supportive. We conclude that high variability of response to non-invasive brain stimulation plasticity protocols significantly clouds the interpretation of historical findings in dystonia research. There is an opportunity to wipe the slate clean of assumptions and armed with an informative literature in health, re-evaluate whether excessive plasticity has a causal role in the pathophysiology of dystonia
Recommended from our members
Physiology of dystonia: Human studies.
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology
Task-specific dystonia:pathophysiology and management
Task-specific dystonia is a form of isolated focal dystonia with the peculiarity of being displayed only during performance of a specific skilled motor task. This distinctive feature makes task-specific dystonia a particularly mysterious and fascinating neurological condition. In this review, we cover phenomenology and its increasingly broad-spectrum risk factors for the disease, critically review pathophysiological theories and evaluate current therapeutic options. We conclude by highlighting the unique features of task-specific dystonia within the wider concept of dystonia. We emphasise the central contribution of environmental risk factors, and propose a model by which these triggers may impact on the motor control of skilled movement. By viewing task-specific dystonia through this new lens which considers the disorder a modifiable disorder of motor control, we are optimistic that research will yield novel therapeutic avenues for this highly motivated group of patients
Cerebellar modulation of human associative plasticity
Paired associative stimulation (PAS) is a method commonly used in human studies of motor cortex synaptic plasticity. It involves repeated pairs of electrical stimuli to the median nerve and transcranial magnetic stimulation (TMS) of the motor cortex. If the interval between peripheral and TMS stimulation is around 21–25 ms, corticospinal excitability is increased for the following 30–60 min via a long term potentiation (LTP)-like effect within the primary motor cortex. Previous work has shown that PAS depends on the present and previous levels of activity in cortex, and that it can be modified by motor learning or attention. Here we show that simultaneous transcranial direct current stimulation (TDCS; 2 mA) over the cerebellum can abolish the PAS effect entirely. Surprisingly, the effect is seen when the PAS interval is 25 ms but not when it is 21.5 ms. There are two implications from this work. First, the cerebellum influences PAS effects in motor cortex; second, LTP-like effects of PAS have at least two different mechanisms. The results are relevant for interpretation of pathological changes that have been reported in response to PAS in people with movement disorders and to changes in healthy individuals following exercise or other interventions