4 research outputs found

    Production of Bst polymerase for diagnosis of different infections using loop-mediated isothermal amplification

    Get PDF
    Introduction. The large fragment of DNA polymerase I from Geobacillus stearothermophilus GIM1.543 (Bst DNA polymerase) possesses 5'-3' DNA polymerase activity, 5'-3' displacement activity and high processivity. These properties make it possible to use Bst DNA polymerase in loop-mediated isothermal amplification (LAMP), which provides highly specific amplification of the target sequence and is used for rapid detection of agents causing human infectious diseases. The purpose of the study was to produce a recombinant Bst polymerase enzyme in the bacterial expression system and to assess its properties for LAMP-based diagnostics of infectious diseases. Materials and methods. Expression constructs carrying the Bst polymerase gene were obtained using genetic engineering techniques. Different Escherichia coli strains were used for protein expression. Metal-chelate and gel filtration chromatography techniques were used for protein purification. Catalytic characteristics of the enzyme were assessed in loop-mediated isothermal amplification reactions using AmpliSens SARS-CoV-2-IT, AmpliSens IAV-IT and AmpliSens IBV-IT diagnostic systems designed for high-quality detection of SARS-CoV-2, influenza A virus (IAV) and influenza B virus (IBV) RNA, respectively. Results. The offered protocol for production, extraction and purification of recombinant Bst polymerase makes it possible to produce the enzyme in the bacterial expression system using E. coli cells in a soluble form and reaching the yield up to 20% of the total cell mass. In LAMP reactions, the obtained enzyme demonstrates activity comparable with that of the commercial enzyme Bst 2.0 (NEB). Conclusion. Considering the fast purification and production of the enzyme, the obtained recombinant Bst polymerase can be used in LAMP-based diagnostic kits

    Development and Validation of a Protein Array for Detection of Antibodies against the Tick-Borne Pathogen Borrelia miyamotoi

    No full text
    Current serological tests for the emerging tick-borne pathogen Borrelia miyamotoi lack diagnostic accuracy. To improve serodiagnosis, we investigated a protein array simultaneously screening for IgM and IgG reactivity against multiple recombinant B. miyamotoi antigens. The array included six B. miyamotoi antigens: glycerophosphodiester phosphodiesterase (GlpQ), multiple variable major proteins (Vmps), and flagellin. Sera included samples from cases of PCR-proven Borrelia miyamotoi disease (BMD), multiple potentially cross-reactive control groups (including patients with culture-proven Lyme borreliosis, confirmed Epstein-Barr virus, cytomegalovirus, or other spirochetal infections), and several healthy control groups from regions where Ixodes is endemic and regions where it is nonendemic. Based on receiver operating characteristic (ROC) analyses, the cutoff for reactivity per antigen was set at 5 mg/mL for IgM and IgG. The individual antigens demonstrated high sensitivity but relatively low specificity for both IgM and IgG. The best-performing single antigen (GlpQ) showed a sensitivity of 88.0% (95% confidence interval [CI], 78.9 to 93.5) and a specificity of 94.2% (95% CI, 92.7 to 95.6) for IgM/IgG. Applying the previous published diagnostic algorithm—defining seroreactivity as reactivity against GlpQ and any Vmp—revealed a significantly higher specificity of 98.5% (95% CI, 97.6 to 99.2) but a significantly lower sensitivity of 79.5% (95% CI, 69.3 to 87.0) for IgM/IgG compared to GlpQ alone. Therefore, we propose to define seroreactivity as reactivity against GlpQ and any Vmp or flagellin which resulted in a comparable sensitivity of 84.3% (95% CI, 74.7 to 90.8) and a significantly higher specificity of 97.9% (95% CI, 96.9 to 98.7) for IgM/IgG compared to GlpQ alone. In conclusion, we have developed and validated a novel serological tool to diagnose BMD that could be implemented in clinical practice and epidemiological studies
    corecore