3 research outputs found

    Tuning Optical Activity of IV–VI Colloidal Quantum Dots in the Short-Wave Infrared (SWIR) Spectral Regime

    No full text
    The achievement of tunable optical properties across a wide spectral range, along with an efficient surface passivation of lead chalcogenide (PbSe) colloidal quantum dots (CQDs), has significant importance for scientific research and for technological applications. This paper describes two comprehensive pathways to tune optical activities of PbSe CQDs in the near-infrared (NIR, 0.75–1.4 μm) and the short-wave infrared (SWIR, 1.4–3 μm) ranges. A one-pot procedure enabled the growth of relatively large PbSe CQDs (with average sizes up to 14 nm) exploiting programmable temperature control during the growth process. These CQDs showed optical activity up to 3.2 μm. In addition, PbSe/PbS core/shell CQDs prepared by an orderly injection rate led to an energy red-shift of the absorption edge with the increase of the shell thickness, whereas a postannealing treatment further extended the band-edge energy toward the SWIR regime. A better chemical stability of the CQDs with respect to that of PbSe core CQDs was attained by shelling of PbSe by epitaxial layers of PbS, but limited to a short duration (<1 day). However, air stability of the relatively large PbSe as well as the PbSe/PbS CQDs over a prolonged period of time (weeks) was achieved after a postsynthesis chlorination treatment

    Comprehensive Route to the Formation of Alloy Interface in Core/Shell Colloidal Quantum Dots

    No full text
    The electronic properties of colloidal quantum dots (CQDs) have shown intriguing potential in recent years for implementation in various optoelectronic applications. However, their chemical and photochemical stabilities, mainly derived from surface properties, have remained a major concern. This paper reports a new strategic route for the synthesis of surface-treated CQDs, the CdSe/CdS core/shell heterostructures, based on low-temperature coating of a shell constituent, followed by a programmed annealing process. A comprehensive follow-up of the stability and the optical properties through the various synthesis stages is reported, suggesting that the low-temperature coating is responsible for the formation of a sharp interface between the core and the shell, whereas a postcoating annealing process leads to the generation of a thin alloy interfacial layer. At the end of the process, the CdSe/CdS CQDs show a significant improvement of the photoluminescence quantum yield, as well as an exceptional photostability. Consequently, the work reported here provides a convenient generic route to the formation of core/shell CQDs to be employed as a procedure for achieving various other heterostructures

    Influence of Alloying on the Optical Properties of IV–VI Nanorods

    No full text
    The synthesis and structural and optical characterization of PbSe<sub><i>x</i></sub>S<sub>1–<i>x</i></sub> and PbSe/PbSe<sub><i>x</i></sub>S<sub>1–<i>x</i></sub> nanorods with a diameter between 2 and 4.5 nm and a length of 10 to 38 nm is reported. The energy band gap of the nanorods exhibits a pronounced variation upon the change in diameter and composition, with a minor influence on lengths beyond 10 nm. The photoluminescence spectrum of the nanorods is composed of a dominant band, accompanied by a satellite band at elevated temperatures. The dominant band shows an exceptionally small band gap temperature coefficient and negligible extension of the radiative lifetime at cryogenic temperatures compared with the photoluminescence processes in PbSe nanorods and in PbSe<sub><i>x</i></sub>S<sub>1–<i>x</i></sub> quantum dots with similar band gap energy. A theoretical model suggests the occurrence of independent transitions from a pair of band-edge valleys, located at the L points of Brillouin zone, related to the dominant and satellite emission processes. Each valley is four-fold degenerate and possesses a relatively small electron–hole exchange interaction
    corecore