4 research outputs found

    Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult.</p> <p>Results</p> <p>A nitrilase gene was amplified by PCR from the cDNA library of <it>Aspergillus niger </it>K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in <it>Escherichia coli </it>BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val<sub>327 </sub>- Asn<sub>356</sub>) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp<sub>298</sub>-Val<sub>313 </sub>peptide was shortened to Asp<sub>298</sub>-Arg<sub>310 </sub>in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution.</p> <p>Conclusions</p> <p>The nitrilase from <it>Aspergillus niger </it>K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in <it>Aspergillus </it>and <it>Penicillium </it>genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by <it>in vitro </it>protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.</p
    corecore