12 research outputs found
Comparison of biological markers in aerosol-weighed workplaces
Funding Information: Funding information This work was supported by ESF project “The development of up-to-date diagnostic and research methods for the risks caused by nanoparticles and ergonomic factors at workplaces” (Agreement No. 2013/0050/1DP/1.1.1.2.0/13/ APIA/VIAA/025). Publisher Copyright: © 2019, The Author(s). Copyright: Copyright 2019 Elsevier B.V., All rights reserved.Airborne particulates present a potential hazard to health in a variety of indoor workplaces, from offices to the manufacturing floor. Dust and aerosols are two of the most common occupational risk factors in the workplace worldwide. It is very important to understand when it is sufficient to describe dust exposure only by given mass concentration that dust particles could be in the nanosized range in the workplace air even for brief exposures, such as welding aerosols. The main objective was to assess total dust and nanoparticle concentrations in the selected workplaces and to evaluate their impact on workers’ health. This project describes nanoparticle concentrations and their potential impact on workers’ health considering the exposure levels in three workplaces. Industrial and non-industrial environments have been included in the project. The office environment was used as an indicator for the background level of comparison with the metalworking and woodworking industries for measurements of dust particles including the nanoscale particles (> 100 nm). Fraction size of the samples according to a dispersity of > 10 μm, 0.25–10 μm, < 0.25 μm, and 1–100 nm was analysed in order to describe the particles’ chemical composition at the different stages. The worst working conditions (the smallest particles, 12 nm), the highest total dust concentrations, and the lowest difference between total inhalable particle and nanoparticle concentrations were detected among woodworkers. These findings provide a basis on how to evaluate nanoparticle exposure and its impact on workers’ health because the highest immune cell counts and relatively high IL-6 expression were observed among woodworkers compared with the other groups. The data show a negative tendency of nanoparticle exposure concentrations on workers’ health based on the increase of inflammatory processes and damage to airway epithelial cell functionality.Peer reviewe
In vitro impact preliminary assessment of airborne particulate from metalworking and woodworking industries
Funding Information: This work was supported by ESF project “Development of up-to-date diagnostic and research methods for the risks caused by nanoparticles and ergonomic factors at workplaces” Agreement No. 2013/0050/1DP/1.1.1.2.0/13/ APIA/VIAA/025. Publisher Copyright: © 2021, The Author(s).Inhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate the mode of action of pollutants. Gillian3500 pumps were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using an MTT assay. For preliminary assessment, RT-qPCR analyses were performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. An effect on the proliferation of lung epithelial cell line A549 was assessed. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. No inhibiting effect was observed on the proliferation of A549 cells. Preliminary analysis showed that both types of particles suppressed the expression of gelsolin, with the effect of metalworking samples being more pronounced. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression.publishersversionPeer reviewe
In Vitro Safety and Efficacy Evaluation of a Juniperus communis Callus Culture Extract and Matricaria recutita Processing Waste Extract Combination as a Cosmetic Ingredient
Publisher Copyright: © 2024 by the authors.For skin health promotion and cosmetic applications, combinations of plant cell extracts are extensively utilized. As most natural ingredient suppliers offer crude extracts from individual plants or specific isolated compounds, the potential interactions between them are assessed in the development phase of cosmetic products. The industry seeks extract combinations that have undergone optimization and scrutiny for their bioactivities. This study presents a combination of two sustainably produced botanical ingredients and outlines their chemical composition, in vitro safety, and bioactivity for skin health enhancement. The amalgamation comprises the extract of Matricaria recutita processing waste and the extract from Juniperus communis callus culture. Chemical analysis revealed distinct compounds within the extracts, and their combination led to a broader array of potentially synergistic compounds. In vitro assessments on skin cells demonstrated that the combination possesses robust antioxidant properties and the ability to stimulate keratinocyte proliferation, along with regulating collagen type I and matrix metalloproteinase 1 (MMP-1) production by dermal fibroblasts. The identified traits of this combination render it an appealing cosmetic component. To the best of our knowledge, this represents the first case when the extracts derived from medicinal plant processing waste and biotechnological plant cell cultivation processes have been combined and evaluated for their bioactivity.Peer reviewe
Exploring the Potential of Supercritical Fluid Extraction of Matricaria chamomilla White Ray Florets as a Source of Bioactive (Cosmetic) Ingredients
Funding Information: This research was funded by the European Regional Development Fund project “Biorefinery approach for the development of bioactive cosmetic ingredients from byproducts of medicinal plant processing and plant cell cultivation” (No. 1.1.1.1/19/A/075). Publisher Copyright: © 2023 by the authors.Aromatic and medicinal plants are a great source of useful bioactive compounds for use in cosmetics, drugs, and dietary supplements. This study investigated the potential of using supercritical fluid extracts obtained from Matricaria chamomilla white ray florets, a kind of industrial herbal byproduct, as a source of bioactive cosmetic ingredients. Response surface methodology to optimize the supercritical fluid extraction process by analyzing the impact of pressure and temperature on yield and the main bioactive compound groups were used. High-throughput 96-well plate spectrophotometric methods were used to analyze the extracts for total phenols, flavonoids, tannins, and sugars, as well as their antioxidant capacity. Gas chromatography and liquid chromatography-mass spectrometry was used to determine the phytochemical composition of the extracts. The extracts were also analyzed for antimicrobial activity, cytotoxicity, phototoxicity, and melanin content. Statistical analysis was performed to establish correlations between the extracts and develop models to predict the targeted phytochemical recovery and chemical and biological activities. The results show that the extracts contained a diverse range of phytochemical classes and had cytotoxic, proliferation-reducing, and antimicrobial activities, making them potentially useful in cosmetic formulations. This study provides valuable insights for further research on the uses and mechanisms of action of these extracts.publishersversionPeer reviewe
Sea Buckthorn (Hippophae rhamnoides) Waste Biomass after Harvesting as a Source of Valuable Biologically Active Compounds with Nutraceutical and Antibacterial Potential
Funding Information: Funding: This research was funded by ERDF project nr. Nr.1.1.1.1/19/A/146 “Biorefinery processing of sea buckthorn non-fruit biomass using innovative techniques and comprehensive analytical investigation, for obtaining prospective for Latvian bioeconomy high value-added products, including serotonin”. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.For sustainable sea buckthorn (Hippophae rhamnoides) berry production, the task at hand is to find an application for the large amount of biomass waste arising at harvesting. Sea buckthorn (SBT) vegetation is currently poorly studied. The purpose of this research was to assess the composition and potential of SBT twigs as a source of valuable biologically active substances. Water and 50% EtOH extracts of twigs of three Latvian SBT cultivars with a high berry yield and quality, popular for cultivation in many countries (H. rhamnoides ‘Maria Bruvele', ‘Tatiana', ‘Botanicheskaya Lubitelskaya'), were investigated for the first time. The phytochemical composition (UHPLC-ESI-MS/MS analysis) and biological activity of the obtained hydrophilic extracts were determined. The highest yield of polyphenolic compounds and serotonin was observed for ‘Maria Bruvele'. Hydrophilic extracts were investigated for radical scavenging activity (DPPH' test), antibacterial/antifungal activity against five pathogenic bacteria/yeast, cytotoxicity, and the enzymatic activity of alpha-amylase (via in vitro testing), which is extremely important for the treatment of people with underweight, wasting, and malabsorption. The results showed a high potential of sea buckthorn biomass as a source of valuable biologically active compounds for the creation of preparations for the food industry, nutraceuticals, and cosmetics.publishersversionPeer reviewe
Cultivation of 3D dermal tissue by application of autologous matrix
Funding Information: This study was supported in part by Estonian–Latvian cross-border cooperation programme project DELMA (Development of Estonian–Latvian Medical Area) and by grant from corporation Sistçmu Inovâcijas. Publisher Copyright: © 2020 Sciendo. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.The most common reasons for major skin loss are thermal trauma — burns and scalds that can result in rapid, extensive, deep wounds as well as chronic non-healing wounds. Treatment using common techniques is poor and depending on the trauma level can result in death. There is a substantial need for skin integrity restoration. The main goal of this study was to develop an autologous 3D skin model that could eventually be translated into clinical applications. The study examined a variety of factors — extracellular matrix components, cell count, culture medium modification and role of structurally and functionally high-quality 3D skin dermis layer tissue culture production. The results of this study are an essential prerequisite to standardise the use of both clinical, as well as in vitro test systems. Dermal cell lines applied in the study were isolated form patient biopsies obtained at Pauls Stradiòð Clinical University Hospital. Blood plasma type AB was used for fibrin matrix formation. As catalysts, CaCl2 or calcium gluconate, and tranexamic acid were applied. 3D tissue functionality was assessed by evaluation of gene expression and changes in growth factor secretion. Fibrin matrix formulations with 1% and 1.5% CaCl2 and 5 mg, 7 mg and 10 mg tranexamic acid concentration were tested. Better matrix properties were observed with higher concentration of CaCl2 and tranexamic acid. Differences in levels of collagen gene expression and growth factor secretion were observed. Changes in levels of fibroblast growth factor and gene expression were observed in fibrin matrix samples and the surface-cultivated cell culture monolayer, but structural protein synthesis was not detected.publishersversionPeer reviewe
Comparative Evaluation of Existing and Rationally Designed Novel Antimicrobial Peptides for Treatment of Skin and Soft Tissue Infections
Skin and soft tissue infections (SSTIs) and acne are among the most common skin conditions in primary care. SSTIs caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) can range in severity, and treating them is becoming increasingly challenging due to the growing number of antibiotic-resistant pathogens. There is also a rise in antibiotic-resistant strains of Cutibacterium acne, which plays a role in the development of acne. Antimicrobial peptides (AMPs) are considered to be a promising solution to the challenges posed by antibiotic resistance. In this study, six new AMPs were rationally designed and compared to five existing peptides. The MIC values against E. coli, P. aeruginosa, K. pneumoniae, E. faecium, S. aureus, and C. acnes were determined, and the peptides were evaluated for cytotoxicity using Balb/c 3T3 cells and dermal fibroblasts, as well as for hemolytic activity. The interaction with bacterial membranes and the effect on TNF-α and IL-10 secretion were also evaluated for selected peptides. Of the tested peptides, RP556 showed high broad-spectrum antibacterial activity without inducing cytotoxicity or hemolysis, and it stimulated the production of IL-10 in LPS-stimulated peripheral blood mononuclear cells. Four of the novel AMPs showed pronounced specificity against C. acnes, with MIC values (0.3–0.5 μg/mL) below the concentrations that were cytotoxic or hemolytic
Valorization of Bioactive Compounds from By-Products of <i>Matricaria recutita</i> White Ray Florets
In this research, we have reported the valorization possibilities of Matricaria recutita white ray florets using supercritical fluid extraction (SFE) with CO2. Experiments were conducted at temperatures of 35–55 °C and separation pressures of 5–9 MPa to evaluate their impact on the chemical composition and biological activity of the extracts. The total obtained extraction yields varied from 9.76 to 18.21 g 100 g−1 DW input. The greatest extraction yield obtained was at 9 MPa separation pressure and 55 °C in the separation tank. In all obtained extracts, the contents of total phenols, flavonoids, tannins, and sugars were determined. The influence of the supercritical CO2 extraction conditions on the extract antioxidant capacity was evaluated using the quenching activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The chemical composition of the extracts was identified using both gas and liquid chromatography–mass spectrometry methods, whereas analyses of major and minor elements as well as heavy metals by microwave plasma atomic emission spectrometer were provided. Moreover, extracts were compared with respect to their antimicrobial activity, as well as the cytotoxicity and phototoxicity of the extracts. The results revealed a considerable diversity in the phytochemical classes among all extracts investigated in the present study and showed that the Matricaria recutita white ray floret by-product possesses cytotoxic and proliferation-reducing activity in immortalized cell lines, as well as antimicrobial activity. To the best of our knowledge, this is the first paper presenting such comprehensive data on the chemical profile, antioxidant properties, and biological properties of SFE derived from Matricaria recutita white ray florets. For the first time, these effects have been studied in processing by-products, and the results generated in this study provide valuable preconditions for further studies in specific test systems to fully elucidate the mechanisms of action and potential applications, such as potential use in cosmetic formulations
Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste
It has now been proven that many pathogens that cause infections and inflammation gradually mutate and become resistant to antibiotics. Chemically synthesized drugs treating inflammation most often only affect symptoms, but side effects could lead to the failure of human organs’ functionality. On the other hand, plant-derived natural compounds have a long-term healing effect. It was shown that sea buckthorn (SBT) twigs are a rich source of biologically active compounds, including oligomeric proanthocyanidins (PACs). This study aimed to assess the anti-pathogenic and anti-inflammatory activity of water/ethanol extracts and PACs obtained from the lignocellulosic biomass of eight SBT cultivars. The anti-pathogenic activity of extracts and PACs was studied against pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus and fungus Candida albicans in 96-well plates by the two-fold serial broth microdilution method. The anti-bacterial activity of purified PACs was 4 and 10 times higher than for water and water/ethanol extracts, respectively, but the extracts had higher anti-fungal activity. Purified PACs showed the ability to reduce IL-8 and IL-6 secretion from poly-I:C-stimulated peripheral blood mononuclear cells. For the extracts and PACs of SBT cultivar ‘Maria Bruvele’ in the concentration range 0.0313–4.0 mg/mL, no toxic effect was observed
Synergistic Effect of Polyphenol-Rich Complex of Plant and Green Propolis Extracts with Antibiotics against Respiratory Infections Causing Bacteria
Bacterial infections are a prevalent complication after primary viral respiratory infections and are associated with high morbidity and mortality. Antibiotics are widely used against bacterial respiratory pathogens; however, the rise in antibiotic-resistant strains urges us to search for new antimicrobial compounds, including ones that act synergistically with antibiotics. In this study, the minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations of a polyphenol-rich complex of green propolis, Tabebuia avellanedae bark, and Olea europaea leaf extracts against Staphylococcus aureus, Haemophilus influenzae, and Klebsiella pneumoniae were determined, followed by an analysis of the synergistic effect with clarithromycin, azithromycin, and amoxiclav (875/125 mg amoxicillin/clavulanic acid). A combination of extracts showed activity against all three bacterial strains, with MIC values ranging from 0.78 to 12.5 mg/mL and MBC values from 1.56 to 12.5 mg/mL. The extracts showed synergistic activity with azithromycin and clarithromycin against S. aureus, with clarithromycin against K. pneumoniae, and with all three tested antibiotics against H. influenzae. Synergy with clarithromycin was additionally evaluated in a time-kill assay where the synergistic effects against S. aureus and K. pneumoniae were seen within the first 6 h of incubation. The results show the potential of polyphenol-rich extracts in enhancing the efficacy of antibiotic therapy and indicate their potential to be used in the management of respiratory infections