11 research outputs found
Sterically Hindered Quaternary Phosphonium Salts (QPSs): Antimicrobial Activity and Hemolytic and Cytotoxic Properties
Structure–activity relationships are important for the design of biocides and sanitizers. During the spread of resistant strains of pathogenic microbes, insights into the correlation between structure and activity become especially significant. The most commonly used biocides are nitrogen-containing compounds; the phosphorus-containing ones have been studied to a lesser extent. In the present study, a broad range of sterically hindered quaternary phosphonium salts (QPSs) based on tri-tert-butylphosphine was tested for their activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and fungi (Candida albicans, Trichophyton mentagrophytes var. gypseum). The cation structure was confirmed to determine their biological activity. A number of QPSs not only exhibit high activity against both Gram-positive and -negative bacteria but also possess antifungal properties. Additionally, the hemolytic and cytotoxic properties of QPSs were determined using blood and a normal liver cell line, respectively. The results show that tri-tert-butyl(n-dodecyl)phosphonium and tri-tert-butyl(n-tridecyl)phosphonium bromides exhibit both low cytotoxicity against normal human cells and high antimicrobial activity against bacteria, including methicillin-resistant strains S. aureus (MRSA). The mechanism of QPS action on microbes is discussed. Due to their high selectivity for pathogens, sterically hindered QPSs could serve as effective tunable biocides
Antimicrobial Properties and Cytotoxic Effect of Imidazolium Geminis with Tunable Hydrophobicity
Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor. Among dicationic surfactants, decyl derivatives showed highest antimicrobial effect, while for monocationic analogues, the maximum activity is observed in the case of tetradecyl tail. The leading compounds are 2–4 times higher in activity compared to reference antibiotics and prove effective against resistant strains. It has been shown that the antimicrobial effect is not associated with the destruction of the cell membrane, but is due to specific interactions of surfactants and cell components. Importantly, they show strong selectivity for microorganism cells while being of low harm to healthy human cells, with a SI ranging from 30 to 100
Supramolecular Self-Assembly of Porphyrin and Metallosurfactant as a Drug Nanocontainer Design
The combined method of treating malignant neoplasms using photodynamic therapy and chemotherapy is undoubtedly a promising and highly effective treatment method. The development and establishment of photodynamic cancer therapy is closely related to the creation of sensitizers based on porphyrins. The present study is devoted to the investigation of the spectroscopic, aggregation, and solubilization properties of the supramolecular system based on 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP) and lanthanum-containing surfactant (LaSurf) in an aqueous medium. The latter is a complex of lanthanum nitrate and two cationic amphiphilic molecules of 4-aza-1-hexadecylazoniabicyclo[2.2.2]octane bromide. The mixed TSPP–LaSurf complexes can spontaneously assemble into various nanostructures capable of binding the anticancer drug cisplatin. Morphological behavior, stability, and ability to drug binding of nanostructures can be tailored by varying the molar ratio and the concentration of components. The guest binding is shown to be additional factor controlling structural rearrangements and properties of the supramolecular TSPP–LaSurf complexes
Synthesis, Self-Assembly in Crystalline Phase and Anti-Tumor Activity of 2-(2-/4-Hydroxybenzylidene)thiazolo[3,2-a]pyrimidines
A series of new thiazolo[3,2-a]pyrimidines different by aryl substituents in 2 and 5 positions are synthesized and characterized in solution as well as in the crystalline phase using 1H and 13C NMR-, IR-spectroscopies, mass-spectrometry methods, and single crystal X-ray diffraction (SCXRD). The SCXRD study revealed the role of intermolecular H-bonding in the formation of supramolecular architectures (racemic monomers, centrosymmetric racematic dimers, or homochiral 1D chains) of obtained thiazolo[3,2-a]pyrimidines derivatives depending on solvents (aprotic DMSO or protic EtOH) used upon the crystallization process. Moreover, the in vitro study of cytotoxicity toward different tumor cells showed their high or moderate efficiency with moderate cytotoxicity against normal liver cells which allows to consider the obtained thiazolo[3,2-a]pyrimidine derivatives as promising candidates for application as antitumor agents
(2-Hydroxy-3-Methoxybenzylidene)thiazolo[3,2-<i>a</i>]pyrimidines: Synthesis, Self-Assembly in the Crystalline Phase and Cytotoxic Activity
A series of new 2-hydroxy-3-methoxybenzylidenethiazolo[3,2-a]pyrimidines with different aryl substituents at the 5 position are synthesized and characterized by 1H/ 13C NMR and IR-spectroscopy and mass-spectrometry, as well as single crystal X-ray diffraction (SCXRD). It was demonstrated that the type of hydrogen bonding can play a key role in the chiral discrimination of these compounds in the crystalline phase. The hydrogen bond of the O–H...N type leads to 1D supramolecular heterochiral chains or conglomerate crystallization in the case of the formation of homochiral chains. The hydrogen bond of O–H...O type gave racemic dimers, which are packed into 2D supramolecular layers with a parallel or angular dimers arrangement. Halogen bonding of the N...Br or O...Br type brings a new motif into supramolecular self-assembly in the crystalline phase: the formation of 1D supramolecular homochiral chains instead 2D supramolecular layers. The study of cytotoxicity against various tumor cells in vitro was carried out. It was found that 2-hydroxy−3-methoxybenzylidenethiazolo[3,2-a]pyrimidines with 3-nitrophenyl substituent at C5 carbon atom demonstrated a high efficiency against M-HeLa (cervical adenocarcinoma) and low cytotoxicity against normal liver cells
Thymine-Modified Nanocarrier for Doxorubicin Delivery in Glioblastoma Cells
Brain tumor glioblastoma is one of the worst types of cancer. The blood–brain barrier prevents drugs from reaching brain cells and shields glioblastoma from treatment. The creation of nanocarriers to improve drug delivery and internalization effectiveness may be the solution to this issue. In this paper, we report on a new nanocarrier that was developed to deliver the anticancer drug doxorubicin to glioblastoma cells. The nanocarrier was obtained by nanoemulsion polymerization of diallyl disulfide with 1-allylthymine. Diallyl disulfide is a redox-sensitive molecule involved in redox cell activities, and thymine is a uracil derivative and one of the well-known bioactive compounds that can enhance the pharmacological activity of doxorubicin. Doxorubicin was successfully introduced into the nanocarrier with a load capacity of about 4.6%. Biological studies showed that the doxorubicin nanocarrier composition is far more cytotoxic to glioblastoma cells (T98G) than it is to cancer cells (M-HeLa) and healthy cells (Chang liver). The nanocarrier improves the penetration of doxorubicin into T98G cells and accelerates the cells’ demise, as is evident from flow cytometry and fluorescence microscopy data. The obtained nanocarrier, in our opinion, is a promising candidate for further research in glioblastoma therapy
The Highly Regioselective Synthesis of Novel Imidazolidin-2-Ones via the Intramolecular Cyclization/Electrophilic Substitution of Urea Derivatives and the Evaluation of Their Anticancer Activity
A series of novel 4-(het)arylimidazoldin-2-ones were obtained by the acid-catalyzed reaction of (2,2-diethoxyethyl)ureas with aromatic and heterocyclic C-nucleophiles. The proposed approach to substituted imidazolidinones benefits from excellent regioselectivity, readily available starting materials and a simple procedure. The regioselectivity of the reaction was rationalized by quantum chemistry calculations and control experiments. The anti-cancer activity of the obtained compounds was tested in vitro
Rational Design 2-Hydroxypropylphosphonium Salts as Cancer Cell Mitochondria-Targeted Vectors: Synthesis, Structure, and Biological Properties
It has been shown for a wide range of epoxy compounds that their interaction with triphenylphosphonium triflate occurs with a high chemoselectivity and leads to the formation of (2-hydroxypropyl)triphenylphosphonium triflates 3 substituted in the 3-position with an alkoxy, alkylcarboxyl group, or halogen, which were isolated in a high yield. Using the methodology for the disclosure of epichlorohydrin with alcohols in the presence of boron trifluoride etherate, followed by the substitution of iodine for chlorine and treatment with triphenylphosphine, 2-hydroxypropyltriphenylphosphonium iodides 4 were also obtained. The molecular and supramolecular structure of the obtained phosphonium salts was established, and their high antitumor activity was revealed in relation to duodenal adenocarcinoma. The formation of liposomal systems based on phosphonium salt 3 and L-α-phosphatidylcholine (PC) was employed for improving the bioavailability and reducing the toxicity. They were produced by the thin film rehydration method and exhibited cytotoxic properties. This rational design of phosphonium salts 3 and 4 has promising potential of new vectors for targeted delivery into mitochondria of tumor cells
Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities
As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity). Additionally, the interaction of macrocycles with bovine serum albumin as a model plasma protein is estimated by various methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy, circular dichroic spectroscopy, and dynamic light scattering). The results demonstrate the low toxicity of the macrocycles, their anti-platelet effects at the level of acetylsalicylic acid, and weak anticoagulant activity. The study of BSA–macrocycle interactions demonstrates the dependence on macrocycle hydrophilic/hydrophobic group structure; in the case of carboxybetaines, the formation of complexes prevents self-aggregation of BSA molecules in solution. The present study demonstrates new data on potential drug delivery nanosystems based on amphiphilic calix[4]resorcinarenes for their cytotoxicity and effects on blood components
ROS-producing nanomaterial engineered from Cu(I) complexes with P2N2-ligands for cancer cells treating
Abstract The work presents core–shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization