2 research outputs found

    Immunomodulatory effects of microbiota-derived metabolites at the crossroad of neurodegenerative diseases and viral infection: network-based bioinformatics insights

    Get PDF
    Bidirectional cross-talk between commensal microbiota and the immune system is essential for the regulation of immune responses and the formation of immunological memory. Perturbations of microbiome-immune system interactions can lead to dysregulated immune responses against invading pathogens and/or to the loss of self-tolerance, leading to systemic inflammation and genesis of several immune-mediated pathologies, including neurodegeneration. In this paper, we first investigated the contribution of the immunomodulatory effects of microbiota (bacteria and fungi) in shaping immune responses and influencing the formation of immunological memory cells using a network-based bioinformatics approach. In addition, we investigated the possible role of microbiota-host-immune system interactions and of microbiota-virus interactions in a group of neurodegenerative diseases (NDs): Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our analysis highlighted various aspects of the innate and adaptive immune response systems that can be modulated by microbiota, including the activation and maturation of microglia which are implicated in the development of NDs. It also led to the identification of specific microbiota components which might be able to influence immune system processes (ISPs) involved in the pathogenesis of NDs. In addition, it indicated that the impact of microbiota-derived metabolites in influencing disease-associated ISPs, is higher in MS disease, than in AD, PD and ALS suggesting a more important role of microbiota mediated-immune effects in MS

    Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders

    No full text
    Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus–host protein–protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host “self” proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus–host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus–host PPIs
    corecore