6 research outputs found

    The Oral Ferroportin Inhibitor VIT-2763 Improves Erythropoiesis without Interfering with Iron Chelation Therapy in a Mouse Model of β-Thalassemia

    No full text
    In β-thalassemia, ineffective erythropoiesis leads to anemia and systemic iron overload. The management of iron overload by chelation therapy is a standard of care. However, iron chelation does not improve the ineffective erythropoiesis. We recently showed that the oral ferroportin inhibitor VIT-2763 ameliorates anemia and erythropoiesis in the Hbbth3/+ mouse model of β-thalassemia. In this study, we investigated whether concurrent use of the iron chelator deferasirox (DFX) and the ferroportin inhibitor VIT-2763 causes any pharmacodynamic interactions in the Hbbth3/+ mouse model of β-thalassemia. Mice were treated with VIT-2763 or DFX alone or with the combination of both drugs once daily for three weeks. VIT-2763 alone or in combination with DFX improved anemia and erythropoiesis. VIT-2763 alone decreased serum iron and transferrin saturation (TSAT) but was not able to reduce the liver iron concentration. While DFX alone had no effect on TSAT and erythropoiesis, it significantly reduced the liver iron concentration alone and in the presence of VIT-2763. Our results clearly show that VIT-2763 does not interfere with the iron chelation efficacy of DFX. Furthermore, VIT-2763 retains its beneficial effects on improving ineffective erythropoiesis when combined with DFX in the Hbbth3/+ mouse model. In conclusion, co-administration of the oral ferroportin inhibitor VIT-2763 and the iron chelator DFX is feasible and might offer an opportunity to improve both ineffective erythropoiesis and iron overload in β-thalassemia

    The Oral Ferroportin Inhibitor VIT-2763 Improves Erythropoiesis without Interfering with Iron Chelation Therapy in a Mouse Model of β-Thalassemia

    No full text
    In β-thalassemia, ineffective erythropoiesis leads to anemia and systemic iron overload. The management of iron overload by chelation therapy is a standard of care. However, iron chelation does not improve the ineffective erythropoiesis. We recently showed that the oral ferroportin inhibitor VIT-2763 ameliorates anemia and erythropoiesis in the Hbbth3/+ mouse model of β-thalassemia. In this study, we investigated whether concurrent use of the iron chelator deferasirox (DFX) and the ferroportin inhibitor VIT-2763 causes any pharmacodynamic interactions in the Hbbth3/+ mouse model of β-thalassemia. Mice were treated with VIT-2763 or DFX alone or with the combination of both drugs once daily for three weeks. VIT-2763 alone or in combination with DFX improved anemia and erythropoiesis. VIT-2763 alone decreased serum iron and transferrin saturation (TSAT) but was not able to reduce the liver iron concentration. While DFX alone had no effect on TSAT and erythropoiesis, it significantly reduced the liver iron concentration alone and in the presence of VIT-2763. Our results clearly show that VIT-2763 does not interfere with the iron chelation efficacy of DFX. Furthermore, VIT-2763 retains its beneficial effects on improving ineffective erythropoiesis when combined with DFX in the Hbbth3/+ mouse model. In conclusion, co-administration of the oral ferroportin inhibitor VIT-2763 and the iron chelator DFX is feasible and might offer an opportunity to improve both ineffective erythropoiesis and iron overload in β-thalassemia

    Mediterranean Dietary Treatment in Hyperlipidemic Children: Should It Be an Option?

    Get PDF
    Background: Diet is considered the cornerstone of lipid management in hyperlipidemic children but evidence to demonstrate the effects of nutrient benefits on the lipid profile is limited. Aim: The aim of this study is to evaluate the impact of the Mediterranean diet on low-density lipoprotein (LDL-C) and non-high density lipoprotein (HDL-C) decrease in primary hyperlipidemia affected children and in the achievement of therapeutical target levels. Methods: A retrospective cohort study was used, recruiting n = 223 children (10.05 ± 3.26 mean age years) with familial hypercholesterolemia (FH) (n = 61, 27%) and polygenic hypercholesterolemia (PH) (n =162, 73%). Secondary hyperlipidemias were excluded. Based on LDL-C and non-HDL-C decrease, participants were divided into two groups, named the Responder Group and Non-Responder Group. Participants and their families underwent dietary education by an expert nutritionist and were asked to fill in a weekly diary to be delivered at visits. Dietary indications were in line with daily caloric requirement, daily food quality and quantity intakes typical of the Mediterranean diet. These include carbohydrates, extra virgin olive oil, yoghurt and milk derivatives, fish and vegetable proteins, fresh seasonal vegetables and fresh fruits. Nuts or almonds were also recommended. The advice to limit intakes of meat, in particular red meat, and caution against junk food and sugar added food and beverages was provided. At medical visits, carried out at baseline (T0) and 6 months later (T1), children underwent anthropometric measurements and blood collection. Standard kits and methods were applied for lipid analysis. Statistical methods were performed by SAS version 9.4 (SAS Institute, Cary, NC, USA). Signed informed consent was given by parents according to the Declaration of Helsinki and the study was approved by the Local Committee. Results: The Responder Group (n = 156/223, 70%) included 45 FH and 111 PH children, while the Non-Responder Group (n = 67/223, 30%) included 16 FH and 51 PH children. The Responder Group showed total cholesterol (TC), LDL-C and non-HDL-C median percentage decreases of 9.45, 13.51 and 10.90, respectively. These statistically significant changes (p ≤ 0.0001) were similar in the FH and PH subgroups but just PH subjects reached the LDL-C and non-HDL-C target, which fell below 130 mg/dL and 145 mg/dL, respectively. Saturated fatty acids (SFAs) were the main dietary parameter that distinguished between the Responder Group and the Non-Responder Group (p = 0.014). Positive correlations were found at T1 between dietary total lipids, SFAs and cholesterol with serum LDL-C, non-HDL-C and TC variations. These latter serum parameters had an inverse correlation with dietary carbohydrate at T1. Among macronutrients, SFAs were finally demonstrated to be the predictor of serum lipids variation at T1. Conclusions: The dietary intervention with a Mediterranean diet in children with primary hyperlipidemia significantly improves the lipid profile both in FH and PH subgroups and allows target levels of LDL-C and non-HDL-C in PH subjects to be reached. Responsiveness benefits should be primarily attributed to the reduction in SFAs, but changes in dietary lipids, cholesterol and carbohydrate intake may also play a role. In contrast, the Non-Responder Group showed a worsening of lipid profile regarding the unchanged diet

    Probiotics Function in Preventing Atopic Dermatitis in Children

    No full text
    Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by relapsing eczematous injuries and severe pruritus. In the last few years, the AD prevalence has been increasing, reaching 20% in children and 10% in adults in high-income countries. Recently, the potential role of probiotics in AD prevention has generated considerable interest. As many clinical studies show, the gut microbiota is able to modulate systemic inflammatory and immune responses influencing the development of sensitization and allergy. Probiotics are used increasingly against AD. However, the molecular mechanisms underlying the probiotics mediated anti-allergic effect remain unclear and there is controversy about their efficacy. In this narrative review, we examine the actual evidence on the effect of probiotic supplementation for AD prevention in the pediatric population, discussing also the potential biological mechanisms of action in this regard

    Probiotics Function in Preventing Atopic Dermatitis in Children

    No full text
    Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by relapsing eczematous injuries and severe pruritus. In the last few years, the AD prevalence has been increasing, reaching 20% in children and 10% in adults in high-income countries. Recently, the potential role of probiotics in AD prevention has generated considerable interest. As many clinical studies show, the gut microbiota is able to modulate systemic inflammatory and immune responses influencing the development of sensitization and allergy. Probiotics are used increasingly against AD. However, the molecular mechanisms underlying the probiotics mediated anti-allergic effect remain unclear and there is controversy about their efficacy. In this narrative review, we examine the actual evidence on the effect of probiotic supplementation for AD prevention in the pediatric population, discussing also the potential biological mechanisms of action in this regard

    The oral ferroportin inhibitor vamifeport improved hemodynamics in a mouse model of sickle cell disease

    Full text link
    Sickle cell disease (SCD) is an inherited hemolytic anemia caused by a single point mutation in the beta‑globin gene of hemoglobin that leads to synthesis of sickle hemoglobin (HbS) in red blood cells (RBCs). HbS polymerizes in hypoxic conditions, leading to intravascular hemolysis, release of free hemoglobin and heme, and increased adhesion of blood cells to endothelial vasculature, which causes painful vaso-occlusion and organ damage. HbS polymerization kinetics are strongly dependent on the intracellular HbS concentration; a relatively small reduction in cellular HbS concentration may prevent HbS polymerization and its sequelae. We hypothesized that iron restriction via blocking ferroportin, the unique iron transporter in mammals, might reduce HbS concentration in RBCs, thereby decreasing hemolysis, improving blood flow, and preventing vaso-occlusive events. Indeed, vamifeport (also known as VIT-2763), a clinical-stage oral ferroportin inhibitor, reduced hemolysis markers in the Townes model of SCD. The RBC indices of vamifeport-treated male and female Townes (HbSS) mice showed changes attributable to iron-restricted erythropoiesis: decreased corpuscular hemoglobin concentration mean and mean corpuscular volume, as well as increased hypochromic and microcytic RBC fractions. Furthermore, vamifeport reduced plasma soluble vascular cell adhesion molecule-1 concentrations, which suggests lowered vascular inflammation. Accordingly, intravital video microscopy of fluorescently labeled blood cells in the microvasculature of Townes mice treated with vamifeport demonstrated diminished adhesion to the endothelium and improved hemodynamics. These preclinical data provide a strong proof-of-concept for vamifeport in the Townes model of SCD and support further development of this compound as a potential novel therapy in SCD
    corecore