28 research outputs found
Ca-ATPase activity and protein composition of sarcoplasmic reticulum membranes isolated from skeletal muscles of typical hibernator, the ground squirrel Spermophilus undulatus
Ca-ATPase activity in sarcoplasmic reticulum (SR) membranes isolated from skeletal muscles of the typical hibernator, the ground squirrel Spermophilus undulatus, is about 2-fold lower than that in SR membranes of rats and rabbits and is further decreased 2-fold during hibernation. The use of carbocyanine anionic dye Stains-All has revealed that Ca-binding proteins of SR membranes, histidine-rich Ca-binding protein and sarcalumenin, in ground squirrel, rat, and rabbit SR have different electrophoretic mobility corresponding to apparent molecular masses 165, 155, and 170 kDa and 130, 145, and 160 kDa, respectively; the electrophoretic mobility of calsequestrin (63 kDa) is the same in all preparations. The content of these Ca-binding proteins in SR membranes of the ground squirrels is decreased 3–4 fold and the content of 55, 30, and 22 kDa proteins is significantly increased during hibernation
Cytogenomic Profile of Uterine Leiomyoma: In Vivo vs. In Vitro Comparison
We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body
Epidemiology of the vestibular schwannomas in Ukraine and our experience of surgical and radiosurgical treatment
Aim: Figuring out the occurrence of vestibular schwannomas (VS) and their management tendencies in Ukraine.Materials and methods: Data about VS detection and treatment were collected among all Ukrainian neurosurgical and radiological facilities which are enrolled in providing care for these patients. Together with those who were treated overseas the total number in 2016-2018 was 903 people. There were 665 cases (73.6  %) treated surgically, 124 cases (13.8  %) irradiated and 114 (12.6  %) observed via serial imaging.Results: The prevalence of VS in Ukraine is about 7.27 per 1 million people which corresponds to data around the world (CBTRUS trial suggested VS incidence 10-20 people per 1 million during 2004-2009).Most of verified VSs were treated surgically (73.6  %), lesser part was irradiated (13.8  %) and 12.7 % were followed-up by wait-and-scan strategy. Our data regarding surgical management was higher than worldwide. At the same time, the volume of detected tumors was much larger in comparison to published data. Seventy-three per cent of all cases were Koos T4 tumors as a possible result of poor diagnosis and lack of alertness making surgical interventions more common and difficult.Total and subtotal resection rate was 79  % as the result of combined microsurgical and endoscopic techniques under intraoperative electrophysiological neuromonitoring guidance. The facial nerve was preserved in 94.2  % of cases, cochlear — in 8.5  % of cases. The average mortality rate during 2016-2018 in Ukraine was 3.1  % with 1.3  % in Subtentorial Neurooncology Department of the Romodanov Neurosurgery Institute.Conclusions: For further improvements and development of optimal management strategies for patients with VS, it is necessary to improve earlier diagnosis and reasonable to provide neurosurgical care in high-volume centers based on the profound expertise with further advances in technologies for functionally favorable outcomes
Correction: Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles.
[This corrects the article DOI: 10.1371/journal.pone.0204467.]
Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles.
Blastocrithidia papi is a unique trypanosomatid in that its life cycle is synchronized with that of its host, and includes an obligate stage of development in Malpighian tubules (MTs). This occurs in firebugs, which exited the winter diapause. In the short period, preceding the mating of overwintered insects, the flagellates penetrate MTs of the host, multiply attached to the epithelial surface with their flagella, and start forming cyst-like amastigotes (CLAs) in large agglomerates. By the moment of oviposition, a large number of CLAs are already available in the rectum. They are discharged on the eggs' surface with feces, used for transmission of bugs' symbiotic bacteria, which are compulsorily engulfed by the newly hatched nymphs along with the CLAs. The obligate development of B. papi in MTs is definitely linked to the life cycle synchronization. The absence of peristalsis allow the trypanosomatids to accumulate and form dense CLA-forming subpopulations, whereas the lack of peritrophic structures facilitates the extensive discharge of CLAs directly into the hindgut lumen. The massive release of CLAs associated with oviposition is indispensable for maximization of the infection efficiency at the most favorable time point
Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas.
Here we described a new trypanosomatid species, Phytomonas lipae, parasitizing the dock bug Coreus marginatus based on axenic culture and in vivo material. Using light and electron microscopy we characterized the development of this flagellate in the intestine, hemolymph and salivary glands of its insect host. The intestinal promastigotes of Phytomonas lipae do not divide and occur only in the anterior part of the midgut. From there they pass into hemolymph, increasing in size, and then to salivary glands, where they actively proliferate without attachment to the host's epithelium and form infective endomastigotes. We conducted molecular phylogenetic analyses based on 18s rRNA, gGAPDH and HSP83 gene sequences, of which the third marker performed the best in terms of resolving phylogenetic relationships within the genus Phytomonas. Our inference demonstrated rather early origin of the lineage comprising the new species, right after that of P. oxycareni, which represents the earliest known branch within the Phytomonas clade. This allowed us to compare the development of P. lipae and three other Phytomonas spp. in their insect hosts and reconstruct the vectorial part of the life cycle of their common ancestor
If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus.
Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end)
The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates
Monoxenous (insect-restricted) trypanosomatids are highly diverse and abundant in nature. While many papers focus on the taxonomy and distribution of these parasites, studies on their biology are still scarce. In particular, this concerns trypanosomatids inhabiting the ubiquitous mosquitoes. To shed light on the circulation of monoxenous trypanosomatids with the participation of mosquitoes, we performed a multifaceted study combining the examination of naturally- and experimentally-infected insects using light and electron microscopy and molecular identification of parasites. Our examination of overwintering mosquitoes (genera Culex and Culiseta) revealed that their guts contained living trypanosomatids, which can be spread during the next season. Experimental infections with Crithidia spp. demonstrated that imagines represent permissive hosts, while larvae are resistant to these parasites. We argue that for the parasites with wide specificity, mosquitoes act as facultative hosts. Other trypanosomatids may have specific adaptations for vertical transmission in these insects at the expense of their potential to infect a wider range of hosts and, consequently, abundance in nature