22 research outputs found

    Momentum sum rule and factorization of double parton distributions

    Full text link
    We show that the momentum sum rule is a necessary condition for factorization of double parton distributions into a product of two single parton distributions for small values of the parton momentum fractions x and large enough values of the evolution scale Q. This is a somewhat surprising result since the momentum sum rule involves integration over all values of the momentum fraction. In essence, the momentum sum rule provides a proper relation between the double and single parton distributions, which is necessary for the small x factorization at large QQ.Comment: 11 pages, 4 figures, version published in Phys. Rev.

    Numerical solution of the nonlinear evolution equation at small x with impact parameter and beyond the LL approximation

    Full text link
    Nonlinear evolution equation at small x with impact parameter dependence is analyzed numerically. Saturation scales and the radius of expansion in impact parameter are extracted as functions of rapidity. Running coupling is included in this evolution, and it is found that the solution is sensitive to the infrared regularization. Kinematical effects beyond leading logarithmic approximation are taken partially into account by modifying the kernel which includes the rapidity dependent cuts. While the local nonlinear evolution is not very sensitive to these effects, the kinematical constraints cannot be neglected in the evolution with impact parameter.Comment: 22 pages, 37 figures, RevTe

    Small x nonlinear evolution with impact parameter and the structure function data

    Full text link
    The nonlinear Balitsky-Kovchegov equation at small x is solved numerically, incorporating impact parameter dependence. Confinement is modeled by including effective gluon mass in the dipole evolution kernel, which regulates the splitting of dipoles with large sizes. It is shown, that the solution is sensitive to different implementations of the mass in the kernel. In addition, running coupling effects are taken into account in this analysis. Finally, a comparison of the calculations using the dipole framework with the inclusive data from HERA on the structure functions F2 and FL is performed.Comment: 19 pages, 11 figures. Minor revision. One reference added, two figures update

    A matrix formulation for small-x singlet evolution

    Get PDF
    We propose a matrix evolution equation in (x,kt)-space for flavour singlet, unintegrated quark and gluon densities, which generalizes DGLAP and BFKL equations in the relevant limits. The matrix evolution kernel is constructed so as to satisfy renormalization group constraints in both the ordered and antiordered regions of exchanged momenta kt, and incorporates the known NLO anomalous dimensions in the MSbar scheme as well as the NLx BFKL kernel. We provide a hard Pomeron exponent and effective eigenvalue functions that include the n_f-dependence, and give also the matrix of resummed DGLAP splitting functions. The results connect smoothly with those of the single-channel approach. The novel P_{qa} splitting functions show resummation effects delayed down to x=0.0001, while both P_{ga} entries show a shallow dip around x=0.001, similarly to the gluon-gluon single-channel results. We remark that the matrix formulation poses further constraints on the consistency of a BFKL framework with the MSbar scheme, which are satisfied at NLO, but marginally violated by small n_f/N_c^2-suppressed terms at NNLO.Comment: 36 pages, 5 figure

    Exact kinematics in the small x evolution of the color dipole and gluon cascade

    Full text link
    The problem of kinematic effects in the gluon and color dipole cascades is addressed in the large N_c limit of SU(N_c) Yang--Mills theory. We investigate the tree level multi-gluon components of the gluon light cone wave functions in the light cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wave functions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multi-gluon wave function is obtained. Furthermore, we propose an approximate scheme to treat the kinematic effects in the color dipole evolution kernel. The new kernel entangles longitudinal and transverse degrees of freedom and leads to a reduced diffusion in the impact parameter. When evaluated in the next-to-leading logarithmic (NLL) accuracy, the kernel reproduces the correct form of the double logarithmic terms of the dipole size ratios present in the exact NLL dipole kernel. Finally, we analyze the scattering of the incoming gluon light cone components off a gluon target and the fragmentation of the scattered state into the final state. The equivalence of the resulting amplitudes and the maximally-helicity-violating amplitudes is demonstrated in the special case when the target gluon is far in rapidity from the evolved gluon wave function.Comment: 37 pages, 13 figure

    Physics of ultrahigh energy neutrinos

    Full text link
    Ultrahigh energy neutrinos can provide important information about the distant astronomical objects and the origin of the Universe. Precise knowledge about their interactions and production rates is essential for estimating background, expected fluxes and detection probabilities. In this paper we review the applications of the high energy QCD to the calculations of the interaction cross sections of the neutrinos. We also study the production of the ultrahigh energy neutrinos in the atmosphere due to the charm and beauty decays.Comment: 27 pages, 11 Figure

    Evolution equations for the double parton distributions. Initial conditions and transverse momentum dependence

    No full text
    In the first part of this contribution we discuss the problem of the initial conditions for the evolution of double parton distribution functions (PDFs). We show that one can construct a framework based on the expansion in terms of the Dirichlet functions in which both single and double PDFs satisfy momentum sum rules. In the second part, we propose how to include the transverse momentum dependence for the double parton distribution functions using the extension of the Kimber-Martin-Ryskin framework previously applied to the single PDFs

    Evolution equations for the double parton distributions. Initial conditions and transverse momentum dependence

    No full text
    In the first part of this contribution we discuss the problem of the initial conditions for the evolution of double parton distribution functions (PDFs). We show that one can construct a framework based on the expansion in terms of the Dirichlet functions in which both single and double PDFs satisfy momentum sum rules. In the second part, we propose how to include the transverse momentum dependence for the double parton distribution functions using the extension of the Kimber-Martin-Ryskin framework previously applied to the single PDFs
    corecore