9 research outputs found

    Health-related quality of life of early-stage breast cancer patients after different radiotherapy regimens

    Get PDF
    PURPOSE: To evaluate and compare health-related quality of life (HRQL) of women with early-stage breast cancer (BC) treated with different radiotherapy (RT) regimens. METHODS: Data were collected from five prospective cohorts of BC patients treated with breast-conserving surgery and different RT regimens: intraoperative RT (IORT, 1 × 23.3 Gy; n = 267), external beam accelerated partial breast irradiation (EB-APBI, 10 × 3.85 Gy; n = 206), hypofractionated whole breast irradiation(hypo-WBI, 16 × 2.67 Gy; n = 375), hypo-WBI + boost(hypo-WBI-B, 21–26 × 2.67 Gy; n = 189), and simultaneous WBI + boost(WBI-B, 28 × 2.3 Gy; n = 475). Women ≥ 60 years with invasive/in situ carcinoma ≤ 30 mm, cN0 and pN0-1a were included. Validated EORTC QLQ-C30/BR23 questionnaires were used to asses HRQL. Multivariable linear regression models adjusted for confounding (age, comorbidity, pT, locoregional treatment, systemic therapy) were used to compare the impact of the RT regimens on HRQL at 12 and 24 months. Differences in HRQL over time (3–24 months) were evaluated using linear mixed models. RESULTS: There were no significant differences in HRQL at 12 months between groups except for breast symptoms which were better after IORT and EB-APBI compared to hypo-WBI at 12 months (p < 0.001). Over time, breast symptoms, fatigue, global health status and role functioning were significantly better after IORT and EB-APBI than hypo-WBI. At 24 months, HRQL was comparable in all groups. CONCLUSION: In women with early-stage breast cancer, the radiotherapy regimen did not substantially influence long-term HRQL with the exception of breast symptoms. Breast symptoms are more common after WBI than after IORT or EB-APBI and improve slowly until no significant difference remains at 2 years posttreatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10549-021-06314-4

    Whole breast proton irradiation for maximal reduction of heart dose in breast cancer patients

    Get PDF
    PURPOSE: In left-sided breast cancer radiotherapy, tangential intensity modulated radiotherapy combined with breath-hold enables a dose reduction to the heart and left anterior descending (LAD) coronary artery. Aim of this study was to investigate the added value of intensity modulated proton therapy (IMPT) with regard to decreasing the radiation dose to these structures. METHODS: In this comparative planning study, four treatment plans were generated in 20 patients: an IMPT plan and a tangential IMRT plan, both with breath-hold and free-breathing. At least 97 % of the target volume had to be covered by at least 95 % of the prescribed dose in all cases. Specifically with respect to the heart, the LAD, and the target volumes, we analyzed the maximum doses, the mean doses, and the volumes receiving 5-30 Gy. RESULTS: As compared to IMRT, IMPT resulted in significant dose reductions to the heart and LAD-region even without breath-hold. In the majority of the IMPT cases, a reduction to almost zero to the heart and LAD-region was obtained. IMPT treatment plans yielded the lowest dose to the lungs. CONCLUSIONS: With IMPT the dose to the heart and LAD-region could be significantly decreased compared to tangential IMRT with breath-hold. The clinical relevance should be assessed individually based on the baseline risk of cardiac complications in combination with the dose to organs at risk. However, as IMPT for breast cancer is currently not widely available, IMPT should be reserved for patients remaining at high risk for major coronary events

    Path length distribution of multiple-scattered photons by low-coherence Doppler interferometry

    Get PDF
    We report results of measurements by low coherence Doppler interferometry of the path length distribution of photons undergoing multiple scattering in a highly turbid medium. We use a Mach-Zehnder interferometer with multimode graded index fibers and a superluminescent diode as light source. The path length distribution is obtained by recording the heterodyne fluctuations arising due to the Brownian motion of particles in an Intralipid suspension as a function of the optical path length. The experimental path length distribution is in good agreement with predictions of Monte Carlo simulations. In the heterodyne spectrum an increase of the mean Doppler frequency with the path length is observed. The path length resolution of the setup was directly evaluated by replacing the turbid medium with randomly moving scatterers by a mirror attached to a harmonically oscillating piezo-element. The maximum (peak-to-peak) mirror displacement was 10% of the optical wavelength. We observed a narrow and strong (signal/noise ratio ~300) interference peak with the full width at the half maximum ~50 microns equal to the coherence length of the superluminescent diode. However, additional weaker satellite peaks are also observed, which may be caused by the intermodal dispersion in our multimode fibers. We demonstrate that our setup allows achieving high path length resolution for biological tissues where the width of the path length distribution is several millimeters

    Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry

    Get PDF
    We report first results of measurements by low-coherence Doppler interferometry of the path-length distribution of photons undergoing multiple scattering in a highly turbid medium. We use a Mach–Zehnder interferometer with multimode graded-index fibers and a superluminescent diode as the light source. The path-length distribution is obtained by recording of the heterodyne f luctuations that arise from the Brownian motion of particles in an Intralipid suspension as a function of the optical path length. The experimental path-length distribution is in good agreement with predictions of Monte Carlo simulations. In the heterodyne spectrum, an increase of the mean Doppler frequency with path length is observed

    Suppression of dynamic laser speckle signals in multimode fibers of various lengths

    Get PDF
    The effects of fiber coupling and fiber length on photocurrent fluctuations are studied when the light of a laser diode transmitted to and from a dynamic turbid medium by a step-index multimode fiber is studied. When the laser light is coupled asymmetrically, filling only the higher-order modes, the photocurrent fluctuations are suppressed significantly when fiber lengths of as much as 16 m are added between the laser and the medium. Addition of as much as 16 m of detection fiber, or any fiber in the case of symmetric light coupling, leads to much less or no suppression of the photocurrent fluctuation

    Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis

    Get PDF
    We have developed a blood velocimeter based on the principle of self-mixing in a semiconductor laser diode through an optical fiber. The intensity of the light is modulated by feedback from moving scattering particles that contain the Doppler-shift frequency. Upon feedback the characteristics of the laser diode change. The threshold current decreases, and an instable region may become present above the new threshold. The amplitude of the Doppler signal turns out to be related to the difference in intensity between situations with and without feedback. This amplitude is highest just above feedback. The suppression of reflection from the glass-fiber facets is of paramount importance in the obtaining of a higher signal-to-noise ratio. Using an optical stabilization of the feedback, we optimized the performance of the laser-fiber system and the Doppler modulation depth and clarified its behavior with a suitable physical model. We also investigated the effect of the finite coherence length of the laser. We tested the efficiency of the self-mixing velocimeter in vivo with the optical glass fiber inserted in the artery with endoscopic catheters, both in upstream and in downstream blood flow conditions. For the latter we used a special side-reflecting device solution for the fiber facet to allow downstream measurements
    corecore