16 research outputs found

    CRISPR/Cas9-induced modification of the conservative promoter region of VRN-A1 alters the heading time of hexaploid bread wheat

    Get PDF
    In cereals, the vernalization-related gene network plays an important role in regulating the transition from the vegetative to the reproductive phase to ensure optimal reproduction in a temperate climate. In hexaploid bread wheat (Triticum aestivum L.), the spring growth habit is associated with the presence of at least one dominant locus of VERNALIZATION 1 gene (VRN-1), which usually differs from recessive alleles due to mutations in the regulatory sequences of the promoter or/and the first intron. VRN-1 gene is a key regulator of floral initiation; various combinations of dominant and recessive alleles, especially VRN-A1 homeologs, determine the differences in the timing of wheat heading/flowering. In the present study, we attempt to expand the types of VRN-A1 alleles using CRISPR/Cas9 targeted modification of the promoter sequence. Several mono- and biallelic changes were achieved within the 125-117 bp upstream sequence of the start codon of the recessive vrn-A1 gene in plants of semi-winter cv. ‘Chinese Spring’. New mutations stably inherited in subsequent progenies and transgene-free homozygous plants carrying novel VRN-A1 variants were generated. Minor changes in the promoter sequence, such as 1–4 nucleotide insertions/deletions, had no effect on the heading time of plants, whereas the CRISPR/Cas9-mediated 8 bp deletion between −125 and −117 bp of the vrn-A1 promoter shortened the time of head emergence by up to 2-3 days. Such a growth habit was consistently observed in homozygous mutant plants under nonvernalized cultivation using different long day regimes (16, 18, or 22 h), whereas the cold treatment (from two weeks and more) completely leveled the effect of the 8 bp deletion. Importantly, comparison with wild-type plants showed that the implemented alteration has no negative effects on main yield characteristics. Our results demonstrate the potential to manipulate the heading time of wheat through targeted editing of the VRN-A1 gene promoter sequence on an otherwise unchanged genetic background

    The Effect of Daminozide, Dark/Light Schedule and Copper Sulphate in Tissue Culture of Triticum timopheevii

    No full text
    Triticum timopheevii Zhuk. is a tetraploid wheat that is utilized worldwide as a valuable breeding source for wheat improvement. Gene-based biotechnologies can contribute to this field; however, T. timopheevii exhibits recalcitrance and albinism in tissue cultures, making this species of little use for manipulation through genetic engineering and genome editing. This study tested various approaches to increasing in vitro somatic embryogenesis and plant regeneration, while reducing the portion of albinos in cultures derived from immature embryos (IEs) of T. timopheevii. They included (i) adjusting the balance between 2,4-D and daminozide in callus induction medium; (ii) cultivation using various darkness/illumination schedules; and (iii) inclusion of additional concentrations of copper ions in the tissue culture medium. We achieved a 2.5-fold increase in somatic embryogenesis (up to 80%) when 50 mg L−1 daminozide was included in the callus induction medium together with 3 mg L−1 2,4-D. It was found that the dark cultivation for 20–30 days was superior in terms of achieving maximum culture efficiency; moreover, switching to light in under 2 weeks from culture initiation significantly increased the number of albino plants, suppressed somatic embryogenesis, and decreased the regeneration of green plants. Media containing higher levels of copper ions did not have a positive effect on the regeneration of green plants; contrarily, the elevated concentrations caused albinism in plantlets. The results and relevant conclusions of the present study might be valuable for establishing an improved protocol for the regeneration of green plants in tissue cultures of T. timopheevii

    Genetic Transformation of Potato without Antibiotic-Assisted Selection

    No full text
    The genetic engineering of plants often relies on the use of antibiotic or herbicide resistance genes for the initial selection of primary transgenic events. Nevertheless, the commercial release of genetically modified crops containing any marker gene encounters several challenges stemming from the lack of consumer acceptance. The development of strategies enabling the generation of marker-free transgenic plants presents an alternative to address public concerns regarding the safety of biotech crops. This study examined the capabilities of highly regenerative potato cultivars to develop transgenic plants without the presence of selective substances in their media. Internodal segments of in vitro potato plants were inoculated with the Agrobacterium strain AGL0 carrying plasmids, which contained the GFP or RFP gene driven by the CaMV 35S promoter to monitor the transformation process by observing in vivo green or red fluorescence. Despite the absence of selective pressure, inoculated explants demonstrated comparable or even higher transient expression compared to experiments based on antibiotic assistant selection. Consequently, under non-selective conditions, non-transgenic, chimeric, and fully fluorescent potato plantlets were concurrently developed. Among the five tested cultivars, the regeneration efficiency of non-chimeric transgenic plants varied from 0.9 (‘Chicago’) to 2.7 (#12-36-42) plants per 100 detached plantlets. Depending on the regenerative characteristics of potato varieties (early, intermediate, or late), a specific time interval can be determined when a blind collection of transgenic plantlets is more successful, streamlining the transformation procedure. The results indicate that the outlined procedure is simple and reproducible, consistently achieving the transformation efficiency of 7.3–12.0% (per 100 inoculated explants) in potato cultivars without selective pressure. The described transformation procedure holds the potential for obtaining cisgenic or intragenic potato plants with new valuable traits that do not carry marker genes
    corecore