671 research outputs found
Recommended from our members
Research-based versus clinical serum creatinine measurements and the association of acute kidney injury with subsequent kidney function: findings from the Chronic Renal Insufficiency Cohort study.
Background:Observational studies relying on clinically obtained data have shown that acute kidney injury (AKI) is linked to accelerated chronic kidney disease (CKD) progression. However, prior reports lacked uniform collection of important confounders such as proteinuria and pre-AKI kidney function trajectory, and may be susceptible to ascertainment bias, as patients may be more likely to undergo kidney function testing after AKI. Methods:We studied 444 adults with CKD who participated in the prospective Chronic Renal Insufficiency Cohort (CRIC) Study and were concurrent members of a large integrated healthcare delivery system. We estimated glomerular filtration rate (eGFR) trajectories using serum creatinine measurements from (i) the CRIC research protocol (yearly) and (ii) routine clinical care. We used linear mixed effects models to evaluate the associations of AKI with acute absolute change in eGFR and post-AKI eGFR slope, and explored whether these varied by source of creatinine results. Models were adjusted for demographic characteristics, diabetes status and albuminuria. Results:During median follow-up of 8.5 years, mean rate of eGFR loss was -0.31 mL/min/1.73 m2/year overall, and 73 individuals experienced AKI (55% Stage 1). A significant interaction existed between AKI and source of serum creatinine for acute absolute change in eGFR level after discharge; in contrast, AKI was independently associated with a faster rate of eGFR decline (mean additional loss of -0.67 mL/min/1.73 m2/year), which was not impacted by source of serum creatinine. Conclusions:AKI is independently associated with subsequent steeper eGFR decline regardless of the serum creatinine source used, but the strength of association is smaller than observed in prior studies after taking into account key confounders such as pre-AKI eGFR slope and albuminuria
Identification and Localization of Proteins Associated with Biomineralization in the Iron Deposition Vesicles of Honeybees (Apis mellifera)
Honeybees (Apis mellifera) form superparamagnetic magnetite to act as a magnetoreceptor for magnetoreception. Biomineralization of superparamagnetic magnetite occurs in the iron deposition vesicles of trophocytes. Even though magnetite has been demonstrated, the mechanism of magnetite biomineralization is unknown. In this study, proteins in the iron granules and iron deposition vesicles of trophocytes were purified and identified by mass spectrometry. Antibodies against such proteins were produced. The major proteins include actin, myosin, ferritin 2, and ATP synthase. Immunolabeling and co-immunoprecipitation studies suggest that iron is stored in ferritin 2 for the purpose of forming 7.5-nm diameter iron particles and that actin-myosin-ferritin 2 may serve as a transporter system. This system, along with calcium and ATP, conveys the iron particles (ferritin) to the center of iron deposition vesicles for iron granules formation. These proteins and reactants are included in iron deposition vesicles during the formation of iron deposition vesicles from the fusion of smooth endoplasmic reticulum. A hypothetical model for magnetite biomineralization in iron deposition vesicles is proposed for honeybees
Dix conseils pour réussir la conception et la mise en œuvre d'un programme d’éducation médicale axée sur les compétences
Background: Globally there is a move to adopt competency-based medical education (CBME) at all levels of the medical training system. Implementation of a complex intervention such as CBME represents a marked paradigm shift involving multiple stakeholders.
Methods: This article aims to share tips, based on review of the available literature and the authors’ experiences, that may help educators implementing CBME to more easily navigate this major undertaking and avoid “black ice” pitfalls that educators may encounter.
Results: Careful planning prior to, during and post implementation will help programs transition successfully to CBME. Involvement of key stakeholders, such as trainees, teaching faculty, residency training committee members, and the program administrator, prior to and throughout implementation of CBME is critical. Careful and selective choice of key design elements including Entrustable Professional Activities, assessments and appropriate use of direct observation will enhance successful uptake of CBME. Pilot testing may help engage faculty and learners and identify logistical issues that may hinder implementation. Academic advisors, use of curriculum maps, and identifying and leveraging local resources may help facilitate implementation. Planned evaluation of CBME is important to ensure choices made during the design and implementation of CBME result in the desired outcomes.
Conclusion: Although the transition to CBME is challenging, successful implementation can be facilitated by careful design and strategic planning.Contexte : Partout dans le monde, on observe une tendance en faveur de l’éducation médicale axée sur les compétences (EMAC) à tous les niveaux du système d’éducation médicale. Une intervention complexe comme l’élaboration d’un programme d’EMAC représente un important changement de paradigme qui nécessite l’implication de plusieurs parties prenantes.
Méthode : L’objectif de cet article est de partager des conseils dégagés par les auteurs d’une revue de la littérature et de leur propre expérience afin d’aider les éducateurs à mieux s’orienter dans cette entreprise de taille qu’est la mise en œuvre de l’EMAC et à éviter les écueils.
Résultats : Une planification minutieuse avant, pendant et après la transition des programmes vers l’EMAC contribue à garantir son succès. L'implication des principales parties prenantes, telles que les stagiaires, le corps enseignant, les membres du comité du programme de résidence et l'administrateur du programme, avant et pendant la mise en œuvre est essentielle. La sélection attentive des éléments clés, comme les activités professionnelles confiables, les évaluations et l'utilisation appropriée de l'observation directe, favorisera l'adoption de l’EMAC. Des tests pilotes peuvent permettre la participation du corps professoral et des apprenants, et à déceler les problèmes logistiques qui peuvent entraver la mise en œuvre. Les conseillers pédagogiques, le recours à la cartographie des programmes d'études et le repérage et la mobilisation de ressources locales peuvent faciliter la mise en œuvre des programmes d’EMAC. L’évaluation planifiée de ces programmes est importante pour garantir que les choix faits lors de leur conception et mise en œuvre aboutissent aux résultats souhaités.
Conclusion : Puisque la transition vers l’EMAC peut comporter de nombreux défis, elle peut néanmoins être opérée avec succès grâce à une conception et une planification stratégique minutieuses
Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly\u3csup\u3e1\u3c/sup\u3e-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus
Over a quarter of a century ago, Mykles described the presence of putative endocrine cells in the midgut epithelium of the crab Cancer magister (Mykles, 1979). In the years that have followed, these cells have been largely ignored and nothing is known about their hormone content or the functions they play in this species. Here, we used a combination of immunohistochemistry and mass spectrometric techniques to investigate these questions. Using immunohistochemistry, we identified both SIFamide-and tachykinin-related peptide (TRP)-like immunopositive cells in the midgut epithelium of C. magister, as well as in that of Cancer borealis and Cancer productus. In each species, the SIFamide-like labeling was restricted to the anterior portion of the midgut, including the paired anterior midgut caeca, whereas the TRP-like immunoreactivity predominated in the posterior midgut and the posterior midgut caecum. Regardless of location, label or species, the morphology of the immunopositive cells matched that of the putative endocrine cells characterized ultrastructurally by Mykles (Mykles, 1979). Matrix-assisted laser desorption/ ionization-Fourier transform mass spectrometry identified the peptides responsible for the immunoreactivities as GYRKPPFNGSIFamide (Gly 1-SIFamide) and APSGFLGMRamide [Cancer boreatis tachykinin-related peptide Ia (CabTRP Ia)], respectively, both of which are known neuropeptides of Cancer species. Although the function of these midgut-derived peptides remains unknown, we found that both Gly1-SIFamide and CabTRP Ia were released when the midgut was exposed to high-potassium saline. In addition, CabTRP Ia was detectable in the hemolymph of crabs that had been held without food for several days, but not in that of fed animals, paralleling results that were attributed to TRP release from midgut endocrine cells in insects. Thus, one function that midgut-derived CabTRP Ia may play in Cancer species is paracrine/hormonal control of feeding-related behavior, as has been postulated for TRPs released from homologous cells in insects
Recommended from our members
A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies.
Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies
Wishing for deburdening through a sustainable control after bariatric surgery
The aim of this study was an in-depth investigation of the change process experienced by patients undergoing bariatric surgery. A prospective interview study was performed prior to as well as 1 and 2 years after surgery. Data analyses of the transcribed interviews were performed by means of the Grounded Theory method. A core category was identified: Wishing for deburdening through a sustainable control over eating and weight, comprising three related categories: hoping for deburdening and control through surgery, feeling deburdened and practising control through physical restriction, and feeling deburdened and trying to maintain control by own willpower. Before surgery, the participants experienced little or no control in relation to food and eating and hoped that the bariatric procedure would be the first brick in the building of a foundation that would lead to control in this area. The control thus achieved in turn affected the participants' relationship to themselves, their roles in society, and the family as well as to health care. One year after surgery they reported established routines regarding eating as well as higher self-esteem due to weight loss. In family and society they set limits and in relation to health care staff they felt their concern and reported satisfaction with the surgery. After 2 years, fear of weight gain resurfaced and their self-image was modified to be more realistic. They were no longer totally self-confident about their condition, but realised that maintaining control was a matter of struggle to obtaining a foundation of sustainable control. Between 1 and 2 years after surgery, the physical control mechanism over eating habits started to more or less fade for all participants. An implication is that when this occurs, health care professionals need to provide interventions that help to maintain the weight loss in order to achieve a good long-term outcome
Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514
Overview of BioCreative II gene normalization
Background: The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name may refer to different genes (often from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts associated with articles previously curated for human genes. We provided 281 expert-annotated abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator agreement was measured at over 90%. Results: Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system outputs using simple voting schemes and classifiers obtained improved results; the best composite system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23), identifying 763 out of 785 identifiers. Conclusion: Major advances for the BioCreative II gene normalization task include broader participation (20 versus 8 teams) and a pooled system performance comparable to human experts, at over 90% agreement. These results show promise as tools to link the literature with biological databases
Does culture shape face perception in autism? Cross-cultural evidence of the own-race advantage from the UK and Japan
Autism spectrum disorders (ASD) are associated with face perception atypicalities, and atypical experience with faces has been proposed as an underlying explanation. Studying the own‐race advantage (ORA) for face recognition can reveal the effect of experience on face perception in ASD, although the small number of studies in the area present mixed findings. The current study probed the ORA in ASD by comparing two cultural groups simultaneously for the first time. Children with ASD in the UK (N=16) and Japan (N=26) were compared to age and ability matched TD children in the UK (N=16) and Japan (N=26). Participants completed a two‐alternative forced‐choice task, whereby they had to recognise a just‐seen face from a foil which was manipulated in one of four ways (IC: identity change; EE: easy eyes; HE: hard eyes; HM: hard mouth). Face stimuli were Asian and Caucasian, and thus the same stimuli were own and other‐race depending on the cultural group. The ASD groups in the UK and Japan did not show impaired face recognition abilities, or impairments with recognising faces depending on manipulations to the eye region, and importantly they showed an ORA. There was considerable heterogeneity in the presence of the ORA in ASD and TD and also across cultures. Children in Japan had higher accuracy than children in the UK, and TD children in Japan did not show an ORA. The present cross‐cultural study challenges the view that atypical experiences with faces lead to a reduced/absent ORA in ASD
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
- …