29 research outputs found

    Pneumocystis pneumonia mimicking COVID-19

    Get PDF
    Background. The new coronavirus infection COVID-19 caused by a SARS-CoV-2 zoonotic beta-coronavirus has radically transformed the conventional concept of the immune systems participation in an infectious process. The successful application of anti-interleukin monoclonal antibodies and inhibitors of Janus kinases in COVID-19, traditionally contraindicated in infections, testifies that the immune response to the pathogen may be more dangerous than the infection itself. However, when prescribing the immunosuppressive therapy to COVID-19 patients, one should not forget that some interstitial pneumonias caused by opportunistic microflora, such as Pneumocystis Jirovecii, have similar clinical and radiological manifestations. Clinical case description. A 29-year old female patient was admitted to the infectious disease hospital with complaints of a febrile temperature, shortness of breath at rest, low-productive cough, pronounced weakness. She had been ill for 14 days, the SARS-CoV-2 RNA was detected at the pre-hospital stage. After the admission, a chest CT scan was performed showing a subtotal lung damage with the characteristic radiological manifestations of interstitial pneumonia in the form of ground glass opacity regions, presence of air traps, that was initially attributed to bilateral viral pneumonia (СТ-3/4). The subsequent examination confirming primary HIV infection and a sputum analysis positive for P. Jirovecii allowed us to establish a correct clinical diagnosis of pneumocystis pneumonia against the background of HIV infection and a mild COVID-19 course, administer a co-trimoxazole therapy and obtain a favorable outcome. Conclusion. This observation demonstrates the necessity of applying an individual approach to each patient admitted to a COVID hospital and performing a differential diagnosis, even when COVID-19 is confirmed by the laboratory work, in order not to miss other interstitial pneumonias, in particular, pneumocystis pneumonia appearing against the background on immunodeficiency

    Safety and efficacy of convalescent plasma for COVID-19: the preliminary results of a clinical trial

    Get PDF
    Background. The lack of effective etiotropic therapy for COVID-19 has prompted researchers around the globe to seekr various methods of SARS-CoV-2 elimination, including the use of convalescent plasma. Aim. The aim of this work was to study the safety and efficacy of the convalescence plasma treatment of severe COVID-19 using the plasma containing specific antibodies to the receptor binding domain (RBD) of SARS-CoV-2 S protein in a titer of at least 1:1000. Methods. A single-center, randomized, prospective clinical study was performed at the FRCC FMBA of Russia with the participation of 86 patients who were stratified in two groups. The first group included 20 critically ill patients who were on mechanical ventilation the second group included 66 patients with moderate to severe COVID-19 and with spontaneous respiration. The patients in the second group were randomized into two cohorts in a ratio of 2:1. In the first cohort (46 patients), pathogen-reduced convalescent plasma was transfused (twice, 320 ml each), in the second cohort (20 patients) a similar amount of non-immune freshly frozen plasma was transfused to the patients. Results. The use of plasma of convalescents in patients with severe COVID-19 being on mechanical ventilation does not affect the disease outcome in these patients. The mortality rate in this group was 60%, which corresponds to the average mortality of COVID patients on mechanical ventilation in our hospital. In the second group, clinical improvement was detected in 75% and 51%, for convalescent and non-immune plasma, respectively. Of the 46 people who received convalescent plasma, three patients (6.5%) were transferred to mechanical ventilation, two of them died. In the group receiving non-immune plasma, the need for mechanical ventilation also arose in three patients (15%), of which two died. The hospital mortality in the group of convalescent plasma was 4.3%, which is significantly lower than the average COVID-19 hospital mortality at our Center (6.73%) and more than two times lower than the hospital mortality in the control group (n=150), matched by age and by the disease severity. Conclusions. Thus, we demonstrated a relative safety of convalescent plasma transfusion and the effectiveness of such therapy for COVID-19 at least in terms of the survival of hospitalized patients with severe respiratory failure without mechanical ventilation. In the absence of bioengineered neutralizing antibodies and effective etiotropic therapy, the use of hyperimmune convalescent plasma is the simplest and most effective method of specific etiopathogenetic therapy of severe forms of COVID-19

    Genetic landscape in Russian patients with familial left ventricular noncompaction

    Get PDF
    BackgroundLeft ventricular noncompaction (LVNC) cardiomyopathy is a disorder that can be complicated by heart failure, arrhythmias, thromboembolism, and sudden cardiac death. The aim of this study is to clarify the genetic landscape of LVNC in a large cohort of well-phenotyped Russian patients with LVNC, including 48 families (n=214).MethodsAll index patients underwent clinical examination and genetic analysis, as well as family members who agreed to participate in the clinical study and/or in the genetic testing. The genetic testing included next generation sequencing and genetic classification according to ACMG guidelines.ResultsA total of 55 alleles of 54 pathogenic and likely pathogenic variants in 24 genes were identified, with the largest number in the MYH7 and TTN genes. A significant proportion of variants −8 of 54 (14.8%) −have not been described earlier in other populations and may be specific to LVNC patients in Russia. In LVNC patients, the presence of each subsequent variant is associated with increased odds of having more severe LVNC subtypes than isolated LVNC with preserved ejection fraction. The corresponding odds ratio is 2.77 (1.37 −7.37; p <0.001) per variant after adjustment for sex, age, and family.ConclusionOverall, the genetic analysis of LVNC patients, accompanied by cardiomyopathy-related family history analysis, resulted in a high diagnostic yield of 89.6%. These results suggest that genetic screening should be applied to the diagnosis and prognosis of LVNC patients

    Coordinated Loss and Acquisition of NK Cell Surface Markers Accompanied by Generalized Cytokine Dysregulation in COVID-19

    No full text
    Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome

    Coordinated Loss and Acquisition of NK Cell Surface Markers Accompanied by Generalized Cytokine Dysregulation in COVID-19

    No full text
    Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome

    A Data-Driven Approach to Carrier Screening for Common Recessive Diseases

    No full text
    Genetic screening is an advanced tool for reducing recessive disease burden. Nowadays, it is still unclear as to the number of genes or their variants that are necessary for effective screening. This paper describes the development of a carrier screening custom panel for cystic fibrosis, phenylketonuria, alpha-1 antitrypsin deficiency, and sensorineural hearing loss consisting of 116 variants in the CFTR, PAH, SERPINA1, and GJB2 genes. The approach is based on the cheapest and fastest method, on using a small number of genes, and on the estimation of the effectiveness of carriers’ detection. The custom panel was tested on a population-based cohort that included 1244 participants. Genotypes were determined by the TaqMan OpenArray Genotyping platform on the QuantStudio 12K Flex Real-Time PCR System. The frequency of heterozygotes in the Russian population was 16.87% or 1:6 (CI95%: 14.76–19.00% by Clopper-Pearson exact method): in CFTR—2.81% (1:36), PAH—2.33% (1:43), SERPINA1—4.90% (1:20), and GJB2—6.83% (1:15). The data on allele frequencies were obtained for the first time on a Russian population. The panel allows us to identify the vast majority of carriers of recessive diseases in the population. It is an effective approach to carrier screening for common recessive diseases

    Apixaban versus warfarin in patients with atrial fibrillation

    No full text
    BACKGROUND: Vitamin K antagonists are highly effective in preventing stroke in patients with atrial fibrillation but have several limitations. Apixaban is a novel oral direct factor Xa inhibitor that has been shown to reduce the risk of stroke in a similar population in comparison with aspirin. METHODS: In this randomized, double-blind trial, we compared apixaban (at a dose of 5 mg twice daily) with warfarin (target international normalized ratio, 2.0 to 3.0) in 18,201 patients with atrial fibrillation and at least one additional risk factor for stroke. The primary outcome was ischemic or hemorrhagic stroke or systemic embolism. The trial was designed to test for noninferiority, with key secondary objectives of testing for superiority with respect to the primary outcome and to the rates of major bleeding and death from any cause. RESULTS: The median duration of follow-up was 1.8 years. The rate of the primary outcome was 1.27% per year in the apixaban group, as compared with 1.60% per year in the warfarin group (hazard ratio with apixaban, 0.79; 95% confidence interval [CI], 0.66 to 0.95; P<0.001 for noninferiority; P = 0.01 for superiority). The rate of major bleeding was 2.13% per year in the apixaban group, as compared with 3.09% per year in the warfarin group (hazard ratio, 0.69; 95% CI, 0.60 to 0.80; P<0.001), and the rates of death from any cause were 3.52% and 3.94%, respectively (hazard ratio, 0.89; 95% CI, 0.80 to 0.99; P = 0.047). The rate of hemorrhagic stroke was 0.24% per year in the apixaban group, as compared with 0.47% per year in the warfarin group (hazard ratio, 0.51; 95% CI, 0.35 to 0.75; P<0.001), and the rate of ischemic or uncertain type of stroke was 0.97% per year in the apixaban group and 1.05% per year in the warfarin group (hazard ratio, 0.92; 95% CI, 0.74 to 1.13; P = 0.42). CONCLUSIONS: In patients with atrial fibrillation, apixaban was superior to warfarin in preventing stroke or systemic embolism, caused less bleeding, and resulted in lower mortality. Copyright © 2011 Massachusetts Medical Society. All rights reserved
    corecore