19 research outputs found

    Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq

    Get PDF
    Chronic social defeat stress leads to the development of anxiety-and depression-like states in male mice and is accompanied by numerous molecular changes in brain. The influence of 21-day period of social stress on ribosomal gene expression in five brain regions was studied using the RNA-Seq database. Most Rps, Rpl, Mprs, and Mprl genes were upregulated in the hypothalamus and downregulated in the hippocampus, which may indicate ribosomal dysfunction following chronic social defeat stress. There were no differentially expressed ribosomal genes in the ventral tegmental area, midbrain raphe nuclei, or striatum. This approach may be used to identify a pharmacological treatment of ribosome biogenesis abnormalities in the brain of patients with "ribosomopathies.&quot

    Altered Expression of Genes Associated with Major Neurotransmitter Systems in the Reward-Related Brain Regions of Mice with Positive Fighting Experience

    No full text
    The main neurotransmitters in the brain—dopamine, γ-aminobutyric acid (GABA), glutamate, and opioids—are recognized to be the most important for the regulation of aggression and addiction. The aim of this work was to study differentially expressed genes (DEGs) in the main reward-related brain regions, including the ventral tegmental area (VTA), dorsal striatum (STR), ventral striatum (nucleus accumbens, NAcc), prefrontal cortex (PFC), and midbrain raphe nuclei (MRNs), in male mice with 20-day positive fighting experience in daily agonistic interactions. Expression of opioidergic, catecholaminergic, glutamatergic, and GABAergic genes was analyzed to confirm or refute the influence of repeated positive fighting experience on the development of “addiction-like” signs shown in our previous studies. High-throughput RNA sequencing was performed to identify differentially expressed genes in the brain regions of chronically aggressive mice. In the aggressive mice, upregulation of opioidergic genes was shown (Oprk1 in VTA, Pdyn in NAcc, Penk in PFC, and Oprd1 in MRNs and PFC), as was downregulation of genes Opcml and Oprk1 in STR and Pomc in VTA and NAcc. Upregulation of catecholaminergic genes in VTA (Ddc and Slc6a2) and in NAcc (Th and Drd2) and downregulation of some differentially expressed genes in MRNs (Th, Ddc, Dbh, Drd2, Slc18a2, and Sncg) and in VTA (Adra2c, Sncg, and Sncb) were also documented. The expression of GABAergic and glutamatergic genes that participate in drug addiction changed in all brain regions. According to literature data, the proteins encoded by genes Drd2, Oprk1, Oprd1, Pdyn, Penk, and Pomc are directly involved in drug addiction in humans. Thus, our results confirm our earlier claim about the formation of addiction-like signs following repeated positive fighting experience in mice, as shown previously in our biobehavioral studies

    Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder

    No full text
    Abstract Background Development of anxiety- and depression-like states under chronic social defeat stress in mice has been shown by many experimental studies. In this article, the differentially expressed Slc25* family genes encoding mitochondrial carrier proteins were analyzed in the brain of depressive (defeated) mice versus aggressive mice winning in everyday social confrontations. The collected samples of brain regions were sequenced at JSC Genoanalytica (http://genoanalytica.ru/, Moscow, Russia). Results Changes in the expression of the 20 Slc25* genes in the male mice were brain region- and social experience (positive or negative)-specific. In particular, most Slc25* genes were up-regulated in the hypothalamus of defeated and aggressive mice and in the hippocampus of defeated mice. In the striatum of defeated mice and in the ventral tegmental area of aggressive mice expression of mitochondrial transporter genes changed specifically. Significant correlations between expression of most Slc25* genes and mitochondrial Mrps and Mrpl genes were found in the brain regions. Conclusion Altered expression of the Slc25* genes may serve as a marker of mitochondrial dysfunction in brain, which accompanies the development of many neurological and psychoemotional disorders

    Aberrant Expression of Collagen Gene Family in the Brain Regions of Male Mice with Behavioral Psychopathologies Induced by Chronic Agonistic Interactions

    No full text
    Chronic agonistic interactions promote the development of experimental psychopathologies in animals: a depression-like state in chronically defeated mice and the pathology of aggressive behavior in the mice with repeated wins. The abundant research data indicate that such psychopathological states are associated with significant molecular and cellular changes in the brain. This paper aims to study the influence of a 20-day period of agonistic interactions on the expression patterns of collagen family genes encoding the proteins which are basic components of extracellular matrix (ECM) in different brain regions of mice using the RNA-Seq database. Most of differentially expressed collagen genes were shown to be upregulated in the hypothalamus and striatum of chronically aggressive and defeated mice and in the hippocampus of defeated mice, whereas downregulation of collagen genes was demonstrated in the ventral tegmental areas in both experimental groups. Aberrant expression of collagen genes induced by chronic agonistic interactions may be indicative of specific ECM defects in the brain regions of mice with alternative social experience. This is the first study demonstrating remodeling of ECM under the development of experimental disorders

    Reduced Expression of Slc Genes in the VTA and NAcc of Male Mice with Positive Fighting Experience

    No full text
    A range of several psychiatric medications targeting the activity of solute carrier (SLC) transporters have proved effective for treatment. Therefore, further research is needed to elucidate the expression profiles of the Slc genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied the Slc differentially expressed genes (DEGs) using transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of control and aggressive male mice with psychosis-like behavior induced by repeated experience of aggression accompanied with wins in daily agonistic interactions. The majority of the Slc DEGs were shown to have brain region-specific expression profiles. Most of these genes in the VTA and NAcc (12 of 17 and 25 of 26, respectively) were downregulated, which was not the case in the PFC (6 and 5, up- and downregulated, respectively). In the VTA and NAcc, altered expression was observed for the genes encoding the transporters of neurotransmitters as well as inorganic and organic ions, amino acids, metals, glucose, etc. This indicates an alteration in transport functions for many substrates, which can lead to the downregulation or even disruption of cellular and neurotransmitter processes in the VTA and NAcc, which are attributable to chronic stimulation of the reward systems induced by positive fighting experience. There is not a single Slc DEG common to all three brain regions. Our findings show that in male mice with repeated experience of aggression, altered activity of neurotransmitter systems leads to a restructuring of metabolic and neurotransmitter processes in a way specific for each brain region. We assume that the scoring of Slc DEGs by the largest instances of significant expression co-variation with other genes may outline a candidate for new prognostic drug targets. Thus, we propose that the Slc genes set may be treated as a sensitive genes marker scaffold in brain RNA-Seq studies

    Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq

    No full text
    Chronic social defeat stress leads to the development of anxiety- and depression-like states in male mice and is accompanied by numerous molecular changes in brain. The influence of 21-day period of social stress on ribosomal gene expression in five brain regions was studied using the RNA-Seq database. Most Rps, Rpl, Mprs, and Mprl genes were upregulated in the hypothalamus and downregulated in the hippocampus, which may indicate ribosomal dysfunction following chronic social defeat stress. There were no differentially expressed ribosomal genes in the ventral tegmental area, midbrain raphe nuclei, or striatum. This approach may be used to identify a pharmacological treatment of ribosome biogenesis abnormalities in the brain of patients with “ribosomopathies.

    Dysfunction in Ribosomal Gene Expression in the Hypothalamus and Hippocampus following Chronic Social Defeat Stress in Male Mice as Revealed by RNA-Seq

    No full text
    Chronic social defeat stress leads to the development of anxiety- and depression-like states in male mice and is accompanied by numerous molecular changes in brain. The influence of 21-day period of social stress on ribosomal gene expression in five brain regions was studied using the RNA-Seq database. Most Rps, Rpl, Mprs, and Mprl genes were upregulated in the hypothalamus and downregulated in the hippocampus, which may indicate ribosomal dysfunction following chronic social defeat stress. There were no differentially expressed ribosomal genes in the ventral tegmental area, midbrain raphe nuclei, or striatum. This approach may be used to identify a pharmacological treatment of ribosome biogenesis abnormalities in the brain of patients with “ribosomopathies.

    Behavior of SDS adolescents in behavioral tests after 3 weeks of rest.

    No full text
    <p>*P<0.05; **P<0.01; ***P<0.001 <i>vs</i> the control; <sup>#</sup>P<0.01; <sup>##</sup>P<0.001 <i>vs</i> empty cylinder.</p

    Protocols for studying the effects of combined stress (SDS+SIS or CDS+SIS) on the behavior of adolescents (A) and adult mice stressed in adolescence (B).

    No full text
    <p>SDS - social defeat stress; CDS – communication deprivation stress; SIS – social instability stress. As a control age-matched groups of males living in littermate groups were used. Before being examined in a range of behavioral tests, control animals and adult mice at the period of 31–38 days (B) were placed in individual cages to facilitate behavioral testing and remove group housing effects. Experimental groups and age-matched control groups were tested simultaneously in the behavioral tests (one test per day). Details of protocol are described in section “Materials and methods”.</p
    corecore