538 research outputs found

    Modeling of micro- and nano-scale domain recording by high-voltage atomic force microscopy in ferroelectrics-semiconductors

    Full text link
    The equilibrium sizes of micro- and nano-domains caused by electric field of atomic force microscope tip in ferroelectric semiconductor crystals have been calculated. The domain was considered as a prolate semi-ellipsoid with rather thin domain walls. For the first time we modified the Landauer model allowing for semiconductor properties of the sample and the surface energy of the domain butt. The free carriers inside the crystal lead to the formation of the screening layer around the domain, which partially shields its interior from the depolarization field. We expressed the radius and length of the domain though the crystal material parameters (screening radius, spontaneous polarization value, dielectric permittivity tensor) and atomic force microscope tip characteristics (charge, radius of curvature). The obtained dependence of domain radius via applied voltage is in a good quantitative agreement with the ones of submicron ferroelectric domains recorded by high-voltage atomic force and scanning probe microscopy in LiNbO3 and LiTaO3 crystals.Comment: 21 pages, 5 figure

    Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases

    Get PDF
    White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders

    The Effects of Changing Attention and Context in an Awake Offline Processing Period on Visual Long-Term Memory

    Get PDF
    There is accumulating evidence that sleep as well as awake offline processing is important for the transformation of new experiences into long-term memory (LTM). Yet much remains to be understood about how various cognitive factors influence the efficiency of awake offline processing. In the present study we investigated how changes in attention and context in the immediate period after exposure to new visual information influences LTM consolidation. After presentation of multiple naturalistic scenes within a working memory paradigm, recognition was assessed 30 min and 24 h later in three groups of subjects. One group of subjects engaged in a focused attention task [the Revised Attentional Network Task (R-ANT)] in the 30 min after exposure to the scenes. Another group of subjects remained in the testing room during the 30 min after scene exposure and engaged in no goal- or task-directed activities. A third group of subjects left the testing room and returned 30 min later. A signal detection analysis revealed no significant differences among the three groups in hits, false alarms, or sensitivity on the 30-min recognition task. At the 24-h recognition test, the group that performed the R-ANT made significantly fewer hits compared to the group that left the testing room and did not perform the attention ask. The group that performed the R-ANT and the group that remained in the testing room during the 30-min post-exposure interval made significantly fewer false alarms on the 24-h recognition test compared to the group that left the testing room. The group that stayed in the testing room and engaged in no goal- or task-directed activities exhibited significantly higher sensitivity (d′) compared to the group that left the testing room and the group that performed the R-ANT task. Staying in the same context after exposure to new information and resting quietly with minimal engagement of attention results in the best ability to distinguish old from novel visual stimuli after 24 h. These findings suggest that changes in attentional demands and context during an immediate post-exposure offline processing interval modulate visual memory consolidation in a subtle but significant manner

    Fundamental of Entrepreneurship ENT 300: Alca Bridal Group /Aurella anak Gima... [et al.]

    Get PDF
    Our company name is ALCA Bridal Group. The business of our company has been decided on the form of partnerships. Each partner has contributes certain amount of capital as agreed in our agreement. Our main business activity is Photographers, Bridal Gown, Make-up, Hair Do, Bouquet, Car Decor and Wedding Card. All partners are encourage and entitled to participate in all business management

    Helicobacter pylori Infection Promotes Methylation and Silencing of Trefoil Factor 2, Leading to Gastric Tumor Development in Mice and Humans

    Get PDF
    Background & Aims Trefoil factors (TFFs) regulate mucosal repair and suppress tumor formation in the stomach. Tff1 deficiency results in gastric cancer, whereas Tff2 deficiency increases gastric inflammation. TFF2 expression is frequently lost in gastric neoplasms, but the nature of the silencing mechanism and associated impact on tumorigenesis have not been determined. Methods We investigated the epigenetic silencing of TFF2 in gastric biopsy specimens from individuals with Helicobacter pylori-positive gastritis, intestinal metaplasia, gastric cancer, and disease-free controls. TFF2 function and methylation were manipulated in gastric cancer cell lines. The effects of Tff2 deficiency on tumor growth were investigated in the gp130[superscript F/F] mouse model of gastric cancer. Results In human tissue samples, DNA methylation at the TFF2 promoter began at the time of H pylori infection and increased throughout gastric tumor progression. TFF2 methylation levels were inversely correlated with TFF2 messenger RNA levels and could be used to discriminate between disease-free controls, H pylori-infected, and tumor tissues. Genome demethylation restored TFF2 expression in gastric cancer cell lines, so TFF2 silencing requires methylation. In Tff2-deficient gp130[superscript F/F]/Tff2[superscript −/−] mice, proliferation of mucosal cells and release of T helper cell type-1 (Th-1) 1 cytokines increased, whereas expression of gastric tumor suppressor genes and Th-2 cytokines were reduced, compared with gp130[superscript F/F]controls. The fundus of gp130[superscript F/F]/Tff2[superscript −/−] mice displayed glandular atrophy and metaplasia, indicating accelerated preneoplasia. Experimental H pylori infection in wild-type mice reduced antral expression of Tff2 by increased promoter methylation. Conclusions TFF2 negatively regulates preneoplastic progression and subsequent tumor development in the stomach, a role that is subverted by promoter methylation during H pylori infection.National Health and Medical Research Council (Australia

    A substantial prehistoric European ancestry amongst Ashkenazi maternal lineages

    Get PDF
    The origins of Ashkenazi Jews remain highly controversial. Like Judaism, mitochondrial DNA is passed along the maternal line. Its variation in the Ashkenazim is highly distinctive, with four major and numerous minor founders. However, due to their rarity in the general population, these founders have been difficult to trace to a source. Here we show that all four major founders, similar to 40% of Ashkenazi mtDNA variation, have ancestry in prehistoric Europe, rather than the Near East or Caucasus. Furthermore, most of the remaining minor founders share a similar deep European ancestry. Thus the great majority of Ashkenazi maternal lineages were not brought from the Levant, as commonly supposed, nor recruited in the Caucasus, as sometimes suggested, but assimilated within Europe. These results point to a significant role for the conversion of women in the formation of Ashkenazi communities, and provide the foundation for a detailed reconstruction of Ashkenazi genealogical history
    corecore