9 research outputs found
Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology
In this review, we discuss the role of transforming growth factor-beta (TGF-β) in the development of pulmonary vascular disease (PVD), both pulmonary arteriovenous malformations (AVM) and pulmonary hypertension (PH), in hereditary hemorrhagic telangiectasia (HHT). HHT or Rendu-Osler-Weber disease is an autosomal dominant genetic disorder with an estimated prevalence of 1 in 5000 persons and characterized by epistaxis, telangiectasia and AVMs in more than 80% of cases, HHT is caused by a mutation in the ENG gene on chromosome 9 encoding for the protein endoglin or activin receptor-like kinase 1 (ACVRL1) gene on chromosome 12 encoding for the protein ALK-1, resulting in HHT type 1 or HHT type 2, respectively. A third disease-causing mutation has been found in the SMAD-4 gene, causing a combination of HHT and juvenile polyposis coli. All three genes play a role in the TGF-β signaling pathway that is essential in angiogenesis where it plays a pivotal role in neoangiogenesis, vessel maturation and stabilization. PH is characterized by elevated mean pulmonary arterial pressure caused by a variety of different underlying pathologies. HHT carries an additional increased risk of PH because of high cardiac output as a result of anemia and shunting through hepatic AVMs, or development of pulmonary arterial hypertension due to interference of the TGF-β pathway. HHT in combination with PH is associated with a worse prognosis due to right-sided cardiac failure. The treatment of PVD in HHT includes medical or interventional therapy
Hereditary Hemorrhagic Telangiectasia (HHT) and Survival: The Importance of Systematic Screening and Treatment in HHT Centers of Excellence
Hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disease, is characterized by telangiectases and arteriovenous malformations (AVMs). Untreated AVMs, especially in the lungs-pulmonary AVMs (PAVMs)-can result in morbidity with a decreased life expectancy. We have investigated whether HHT patients, systematically screened for HHT-related organ involvement and treated if needed, have a similar survival as persons without HHT. We included all individuals screened for HHT between 2004 and 2016 with a genetically or clinically confirmed diagnosis (HHT group) or excluded diagnosis (non-HHT control group). The social security number was used to confirm status as dead or alive in December 2019. We included 717 HHT patients and 471 controls. There was no difference in survival between the HHT and the non-HHT control group. The HHT group had a life expectancy of 75.9 years (95% confidence interval (CI) 73.3-78.6), comparable to the control group (79.3 years, 95% CI 74.8-84.0, Mantel-Cox test: p = 0.29). In conclusion, the life expectancy of HHT patients systematically screened for HHT-related organ involvement and treated if needed in an HHT center of excellence was similar compared to their controls, justifying systematic screening and treatment in HHT patients
Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology
In this review, we discuss the role of transforming growth factor-beta (TGF-β) in the development of pulmonary vascular disease (PVD), both pulmonary arteriovenous malformations (AVM) and pulmonary hypertension (PH), in hereditary hemorrhagic telangiectasia (HHT). HHT or Rendu-Osler-Weber disease is an autosomal dominant genetic disorder with an estimated prevalence of 1 in 5000 persons and characterized by epistaxis, telangiectasia and AVMs in more than 80% of cases, HHT is caused by a mutation in the ENG gene on chromosome 9 encoding for the protein endoglin or activin receptor-like kinase 1 (ACVRL1) gene on chromosome 12 encoding for the protein ALK-1, resulting in HHT type 1 or HHT type 2, respectively. A third disease-causing mutation has been found in the SMAD-4 gene, causing a combination of HHT and juvenile polyposis coli. All three genes play a role in the TGF-β signaling pathway that is essential in angiogenesis where it plays a pivotal role in neoangiogenesis, vessel maturation and stabilization. PH is characterized by elevated mean pulmonary arterial pressure caused by a variety of different underlying pathologies. HHT carries an additional increased risk of PH because of high cardiac output as a result of anemia and shunting through hepatic AVMs, or development of pulmonary arterial hypertension due to interference of the TGF-β pathway. HHT in combination with PH is associated with a worse prognosis due to right-sided cardiac failure. The treatment of PVD in HHT includes medical or interventional therapy
Hereditary Hemorrhagic Telangiectasia (HHT) and Survival: The Importance of Systematic Screening and Treatment in HHT Centers of Excellence
Hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disease, is characterized by telangiectases and arteriovenous malformations (AVMs). Untreated AVMs, especially in the lungs—pulmonary AVMs (PAVMs)—can result in morbidity with a decreased life expectancy. We have investigated whether HHT patients, systematically screened for HHT-related organ involvement and treated if needed, have a similar survival as persons without HHT. We included all individuals screened for HHT between 2004 and 2016 with a genetically or clinically confirmed diagnosis (HHT group) or excluded diagnosis (non-HHT control group). The social security number was used to confirm status as dead or alive in December 2019. We included 717 HHT patients and 471 controls. There was no difference in survival between the HHT and the non-HHT control group. The HHT group had a life expectancy of 75.9 years (95% confidence interval (CI) 73.3–78.6), comparable to the control group (79.3 years, 95% CI 74.8–84.0, Mantel–Cox test: p = 0.29). In conclusion, the life expectancy of HHT patients systematically screened for HHT-related organ involvement and treated if needed in an HHT center of excellence was similar compared to their controls, justifying systematic screening and treatment in HHT patients
Pulmonary Arterial Hypertension and Hereditary Haemorrhagic Telangiectasia
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant inherited disease characterised by multisystemic vascular dysplasia. Heritable pulmonary arterial hypertension (HPAH) is a rare but severe complication of HHT. Both diseases can be the result of genetic mutations in ACVLR1 and ENG encoding for proteins involved in the transforming growth factor-beta (TGF-β) superfamily, a signalling pathway that is essential for angiogenesis. Changes within this pathway can lead to both the proliferative vasculopathy of HPAH and arteriovenous malformations seen in HHT. Clinical signs of the disease combination may not be specific but early diagnosis is important for appropriate treatment. This review describes the molecular mechanism and management of HPAH and HHT
Executive summary of the 12th HHT international scientific conference
Hereditary hemorrhagic telangiectasia is an autosomal dominant trait affecting approximately 1 in 5000 people. A pathogenic DNA sequence variant in the ENG, ACVRL1 or SMAD4 genes, can be found in the majority of patients. The 12th International Scientific HHT Conference was held on June 8–11, 2017 in Dubrovnik, Croatia to present and discuss the latest scientific achievements, and was attended by over 200 scientific and clinical researchers. In total 174 abstracts were accepted of which 58 were selected for oral presentations. This article covers the basic science and clinical talks, and discussions from three theme-based workshops. We focus on significant emergent themes and unanswered questions. Understanding these topics and answering these questions will help to define the future of HHT research and therapeutics, and ultimately bring us closer to a cure