16 research outputs found

    Influence of Pesticide Properties on Adsorption Capacity and Rate on Activated Carbon from Aqueous Solution

    Get PDF
    The adsorbate structural properties such as the type, number, and position of substituents on benzene ring of organic compound, as well as a length and arrangement of hydrocarbon chain in a space, exert a significant influence on the adsorption process. The measurements of adsorption equilibria and kinetics of several pesticides belonging to the group of halogenated phenoxyacids differentiated in terms of structural and physicochemical properties were studied in order to characterize the adsorption mechanism and correlate it with the pollutant properties. Regarding a complexity of investigations (capacity and rate) comprising 21 structurally closely related active substances showing the carcinogenic activity on living organisms and relatively long half-life time in the environment, the proposed intensive studies on the removal of pollutants by adsorption process are very important in cognitive and practical terms

    Physicochemical, structural, and adsorption characteristics of DMSPS-co-DVB nanopolymers

    Get PDF
    The aim of this work is the synthesis and characterization of the series of S,Sâ€Č-thiodi-4,1-phenylene bis(thio-methacrylate)-co-divinylbenzene (DMSPS-co-DVB) nanomaterials. The series of new nanopolymers including three mixed systems with different ratios of DMSPS and DVB components, DMSPS-co-DVB = 1:1, DMSPS-co-DVB = 1:2, and DMSPS-co-DVB = 1:3, was synthesized in the polymerization reaction. The research task is to investigate the influence of the reaction mixture composition on morphological, textural, and structural properties of final nanosystems including size, shape, and agglomeration effect. The advanced biphasic nanomaterials enriched with thiol groups were successfully synthesized as potential sorbents for binding organic substances, heavy metals, or biomolecules. To determine the impact of the DMSPS monomer on the final properties of DMSPS-co-DVB nanocomposites, several techniques were applied to reveal the nano-dimensional structure (SAXS), texture (low-temperature nitrogen sorption), general morphology (SEM), acid–base properties (potentiometric titration), and surface chemistry and phase bonding effectiveness (FTIR/ATR spectroscopy). Finally, kinetic studies of aniline sorption on polymeric materials were performed

    Mesocellular Silica Foams (MCFs) with Tunable Pore Size as a Support for Lysozyme Immobilization: Adsorption Equilibrium and Kinetics, Biocomposite Properties

    No full text
    The effect of the porous structure of mesocellular silica foams (MCFs) on the lysozyme (LYS) adsorption capacity, as well as the rate, was studied to design the effective sorbent for potential applications as the carriers of biomolecules. The structural (N2 adsorption/desorption isotherms), textural (SEM, TEM), acid-base (potentiometric titration), adsorption properties, and thermal characteristics of the obtained lysozyme/silica composites were studied. The protein adsorption equilibrium and kinetics showed significant dependence on silica pore size. For instance, LYS adsorption uptake on MCF-6.4 support (pore diameter 6.4 nm) was about 0.29 g/g. The equilibrium loading amount of LYS on MCF-14.5 material (pore size 14.5 nm) increased to 0.55 g/g. However, when the pore diameter was larger than 14.5 nm, the LYS adsorption value systematically decreased with increasing pore size (e.g., for MCF-30.1 was only 0.27 g/g). The electrostatic attractive interactions between the positively charged lysozyme (at pH = 7.4) and the negatively charged silica played a significant role in the immobilization process. The differences in protein adsorption and surface morphology for the biocomposites of various pore sizes were found. The thermal behavior of the studied bio/systems was conducted by TG/DSC/FTIR/MS coupled method. It was found that the thermal degradation of lysozyme/silica composites was a double-stage process in the temperature range 165–420–830 °C

    Mesoporous Carbons of Well-Organized Structure in the Removal of Dyes from Aqueous Solutions

    No full text
    Mesoporous carbons with differentiated properties were synthesized by using the method of impregnation of mesoporous well-organized silicas. The obtained carbonaceous materials and microporous activated carbon were investigated by applying different methods in order to determine their structural, surface and adsorption properties towards selected dyes from aqueous solutions. In order to verify applicability of adsorbents for removing dyes the equilibrium and kinetic experimental data were measured and analyzed by applying various equations and models. The structural and acid-base properties of the investigated carbons were evaluated by Small-Angle X-ray Scattering (SAXS) technique, adsorption/desorption of nitrogen, potentiometric titration, and Transmission Electron Microscopy (TEM). The results of these techniques are complementary, indicating the type of porosity and structural ordering, e.g., the pore sizes determined from the SAXS data are in good agreement with those obtained from nitrogen sorption data. The SAXS and TEM data confirm the regularity of mesoporous carbon structure. The adsorption experiment, especially kinetic measurements, reveals the utility of mesoporous carbons in dye removing, taking into account not only the adsorption uptake but also the adsorption rate

    Physicochemical and Adsorption Characteristics of Divinylbenzene-co-Triethoxyvinylsilane Microspheres as Materials for the Removal of Organic Compounds

    No full text
    In this work, organic-inorganic materials with spherical shape consisting of divinylbenzene (DVB) and triethoxyvinylsilane (TEVS) were synthesized and investigated by different complementary techniques. The obtained microspheres may be applied as sorbent systems for the purification of organic compounds from water. The hybrid microspheres combine the properties of the constituents depending on the morphologies and interfacial bonding. In this work, the influence of the molar ratio composition of crosslinked monomer (DVB) and silane coupling agent (TEVS) (DVB:TEVS molar ratios: 1:2, 1:1 and 2:1) on the morphology and quality of organic-inorganic materials have been examined. The materials were analysed using small angle X-ray scattering (SAXS) analysis, low-temperature nitrogen sorption, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to provide information on their structural and surface properties. Moreover, thermal analysis was performed to characterize the thermal stability of the studied materials and the adsorbent-adsorbate interactions, while adsorption kinetic studies proved the utility of the synthesized adsorbents for water and wastewater treatment

    Mesoporous Carbons and Highly Cross-Linking Polymers for Removal of Cationic Dyes from Aqueous Solutions—Studies on Adsorption Equilibrium and Kinetics

    No full text
    This study presents the results of applying the methods of synthesizing mesoporous carbon and mesoporous polymer materials with an extended porous mesostructure as adsorbents for cationic dye molecules. Both types of adsorbents are synthetic materials. The aim of the presented research was the preparation, characterisation, and utilisation of obtained mesoporous adsorbents. The physicochemical properties, morphology, and porous structure characteristics of the obtained materials were determined using low-temperature nitrogen sorption isotherms, X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and potentiometric titration measurements. The morphology and microstructure were imaged using scanning electron microscopy (SEM). The chemical characterisation of the surface chemistry of the adsorbents, which provides information about the surface-active groups, the elemental composition, and the electronic state of the elements, was carried out using X-ray photoelectron spectroscopy (XPS). The adsorption properties of the mesoporous materials were determined using equilibrium and kinetic adsorption experiments for three selected cationic dyes (derivatives of thiazine (methylene blue) and triarylmethane (malachite green and crystal violet)). The adsorption capacity was analysed to the nanostructural and surface properties of used materials. The Generalized Langmuir equation was applied for the analysis of adsorption isotherm data. The adsorption study showed that the carbon materials have a higher sorption capacity for both methylene blue and crystal violet, e.g., 0.88–1.01 mmol/g and 0.33–0.44 mmol/g, respectively, compared to the polymer materials (e.g., 0.038–0.044 mmol/g and 0.038–0.050 mmol/g, respectively). The kinetics of dyes adsorption was closely correlated with the structural properties of the adsorbents. The kinetic data were analysed using various equations: first-order (FOE), second-order (SOE), mixed 1,2-order (MOE), multi-exponential (m-exp), and fractal-like MOE (f-MOE)
    corecore