20 research outputs found

    Atypical Ductal Hyperplasia after Vacuum-Assisted Breast Biopsy: Can We Reduce the Upgrade to Breast Cancer to an Acceptable Rate?

    Get PDF
    (1) Background: to evaluate which factors can reduce the upgrade rate of atypical ductal hyperplasia (ADH) to in situ or invasive carcinoma in patients who underwent vacuum-assisted breast biopsy (VABB) and subsequent surgical excision. (2) Methods: 2955 VABBs were reviewed; 141 patients with a diagnosis of ADH were selected for subsequent surgical excision. The association between patients' characteristics and the upgrade rate to breast cancer was evaluated in both univariate and multivariate analyses. (3) Results: the upgrade rates to ductal carcinoma in situ (DCIS) and invasive carcinoma (IC) were, respectively, 29.1% and 7.8%. The pooled upgrade rate to DCIS or IC was statistically lower at univariate analysis, considering the following parameters: complete removal of the lesion (p-value < 0.001); BIRADS ≤ 4a (p-value < 0.001); size of the lesion ≤15 mm (p-value: 0.002); age of the patients <50 years (p-value: 0.035). (4) Conclusions: the overall upgrade rate of ADH to DCIS or IC is high and, as already known, surgery should be recommended. However, ADH cases should always be discussed in multidisciplinary meetings: some parameters appear to be related to a lower upgrade rate. Patients presenting these parameters could be strictly followed up to avoid overtreatment

    COVID-19 And Breast Fine Needle Aspiration Cytology Method: What Should We Change?

    Get PDF
    Air-dried slide preparation for fine needle aspiration cytology procedures, is currently considered unsafe because of the risk of infectious aerosols of Coronavirus 19. This study compares the safety and accuracy of two different protocols, one with and one without air-dried slides

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    A Score to Predict the Malignancy of a Breast Lesion Based on Different Contrast Enhancement Patterns in Contrast-Enhanced Spectral Mammography

    No full text
    Background: To create a predictive score of malignancy of a breast lesion based on the main contrast enhancement features ascertained by contrast-enhanced spectral mammography (CESM). Methods: In this single-centre prospective study, patients with suspicious breast lesions (BIRADS > 3) were enrolled between January 2013 and February 2022. All participants underwent CESM prior to breast biopsy, and eventually surgery. A radiologist with 20 years’ experience in breast imaging evaluated the presence or absence of enhancement and the following enhancement descriptors: intensity, pattern, margin, and ground glass. A score of 0 or 1 was given for each descriptor, depending on whether the enhancement characteristic was predictive of benignity or malignancy (both in situ and invasive). Then, an overall enhancement score ranging from 0 to 4 was obtained. The histological results were considered the gold standard in the evaluation of the relationship between enhancement patterns and malignancy. Results: A total of 321 women (median age: 51 years; range: 22–83) with 377 suspicious breast lesions were evaluated. Two hundred forty-nine lesions (66%) have malignant histological results (217 invasive and 32 in situ). Considering an overall enhancement score ≥ 2 as predictive of malignancy, we obtain an overall sensitivity of 92.4%; specificity of 89.8%; positive predictive value of 94.7%; and negative predictive value of 85.8%. Conclusions: Our proposed predictive score on the enhancement descriptors of CESM to predict the malignancy of a breast lesion shows excellent results and can help in early breast cancer diagnosis and in avoiding unnecessary biopsies

    Complete Removal of the Lesion as a Guidance in the Management of Patients with Breast Ductal Carcinoma In Situ

    No full text
    Background: Considering highly selected patients with ductal carcinoma in situ (DCIS), active surveillance is a valid alternative to surgery. Our study aimed to show the reliability of post-biopsy complete lesion removal, documented by mammogram, as additional criterion to select these patients. Methods: A total of 2173 vacuum-assisted breast biopsies (VABBs) documented as DCIS were reviewed. Surgery was performed in all cases. We retrospectively collected the reports of post-VABB complete lesion removal and the histological results of the biopsy and surgery. We calculated the rate of upgrade of DCIS identified on VABB upon excision for patients with post-biopsy complete lesion removal and for those showing residual lesion. Results: We observed 2173 cases of DCIS: 408 classified as low-grade, 1262 as intermediate-grade, and 503 as high-grade. The overall upgrading rate to invasive carcinoma was 15.2% (330/2173). The upgrade rate was 8.2% in patients showing mammographically documented complete removal of the lesion and 19% in patients without complete removal. Conclusion: The absence of mammographically documented residual lesion following VABB was found to be associated with a lower upgrading rate of DCIS to invasive carcinoma on surgical excision and should be considered when deciding the proper management DCIS diagnosis

    Breast Digital Tomosynthesis versus Contrast-Enhanced Mammography: Comparison of Diagnostic Application and Radiation Dose in a Screening Setting

    No full text
    This study aims to evaluate the Average Glandular Dose (AGD) and diagnostic performance of CEM versus Digital Mammography (DM) as well as versus DM plus one-view Digital Breast Tomosynthesis (DBT), which were performed in the same patients at short intervals of time. A preventive screening examination in high-risk asymptomatic patients between 2020 and 2022 was performed with two-view Digital Mammography (DM) projections (Cranio Caudal and Medio Lateral) plus one Digital Breast Tomosynthesis (DBT) projection (mediolateral oblique, MLO) in a single session examination. For all patients in whom we found a suspicious lesion by using DM + DBT, we performed (within two weeks) a CEM examination. AGD and compression force were compared between the diagnostic methods. All lesions identified by DM + DBT were biopsied; then, we assessed whether lesions found by DBT were also highlighted by DM alone and/or by CEM. We enrolled 49 patients with 49 lesions in the study. The median AGD was lower for DM alone than for CEM (3.41 mGy vs. 4.24 mGy, p = 0.015). The AGD for CEM was significantly lower than for the DM plus one single projection DBT protocol (4.24 mGy vs. 5.55 mGy, p < 0.001). We did not find a statistically significant difference in the median compression force between the CEM and DM + DBT. DM + DBT allows the identification of one more invasive neoplasm one in situ lesion and two high-risk lesions, compared to DM alone. The CEM, compared to DM + DBT, failed to identify only one of the high-risk lesions. According to these results, CEM could be used in the screening of asymptomatic high-risk patients

    Advancements in Standardizing Radiological Reports: A Comprehensive Review

    No full text
    Standardized radiological reports stimulate debate in the medical imaging field. This review paper explores the advantages and challenges of standardized reporting. Standardized reporting can offer improved clarity and efficiency of communication among radiologists and the multidisciplinary team. However, challenges include limited flexibility, initially increased time and effort, and potential user experience issues. The efforts toward standardization are examined, encompassing the establishment of reporting templates, use of common imaging lexicons, and integration of clinical decision support tools. Recent technological advancements, including multimedia-enhanced reporting and AI-driven solutions, are discussed for their potential to improve the standardization process. Organizations such as the ACR, ESUR, RSNA, and ESR have developed standardized reporting systems, templates, and platforms to promote uniformity and collaboration. However, challenges remain in terms of workflow adjustments, language and format variability, and the need for validation. The review concludes by presenting a set of ten essential rules for creating standardized radiology reports, emphasizing clarity, consistency, and adherence to structured formats

    How Radiomics Can Improve Breast Cancer Diagnosis and Treatment

    No full text
    Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical “how-to” guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer

    Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management

    No full text
    The aim of this study was to evaluate the diagnostic performance of contrast-enhanced spectral mammography (CESM) in predicting breast lesion malignancy due to microcalcifications compared to lesions that present with other radiological findings. Three hundred and twenty-one patients with 377 breast lesions that underwent CESM and histological assessment were included. All the lesions were scored using a 4-point qualitative scale according to the degree of contrast enhancement at the CESM examination. The histological results were considered the gold standard. In the first analysis, enhancement degree scores of 2 and 3 were considered predictive of malignity. The sensitivity (SE) and positive predictive value (PPV) were significative lower for patients with lesions with microcalcifications without other radiological findings (SE = 53.3% vs. 82.2%, p-value p-value = 0.049, respectively). On the contrary, the specificity (SP) and negative predictive value (NPV) were significative higher among lesions with microcalcifications without other radiological findings (SP = 95.8% vs. 84.2%, p-value = 0.026 and NPV = 82.9% vs. 55.2%, p-value p-value p-value: 0.005) were significantly lower among lesions with microcalcifications without other radiological findings, while the SP (85.9% vs. 50.9%, p-value < 0.001) was higher. The enhancement of microcalcifications has low sensitivity in predicting malignancy. However, in certain controversial cases, the absence of CESM enhancement due to its high negative predictive value can help to reduce the number of biopsies for benign lesion

    How Radiomics Can Improve Breast Cancer Diagnosis and Treatment

    No full text
    Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical &ldquo;how-to&rdquo; guide. Finally, we&nbsp;summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer
    corecore