6 research outputs found

    Myogenic stem cells.

    Get PDF
    Both skeletal muscle and bone marrow tissue contain myogenic stem cells. The population residing in muscles is heterogenic. Predominant in number are "typical" satellite cells - muscle progenitors migrating from somites during embryonic life. Another population is group of multipotent muscle stem cells which, at least in part, are derived from bone marrow. These cells are tracked by gradient of growth factors releasing from muscle during injury or exercise. Recruited bone marrow-derived cells gradually change their phenotype becoming muscle stem cells and eventually can attain satellite cell position and express Pax7 protein. Mesenchymal stem cells (MSC) isolated directly from bone marrow also display myogenic potential, although methods of induction of myogenic differentiation in vitro have not been optimized yet. Concerning efforts of exploiting myogenic stem cells in cell-mediated therapies it is important to understand the cause of impaired regenerative potential of aged muscle. Up to now, most of research data suggest that majority of age related changes in skeletal muscles are reversible, thus depending on extrinsic factors. However, irreversible intrinsic features of muscle stem cells are also taken into consideration

    Copper Does Not Induce Tenogenic Differentiation but Promotes Migration and Increases Lysyl Oxidase Activity in Adipose-Derived Mesenchymal Stromal Cells

    No full text
    Background. Copper belongs to the essential trace metals that play a key role in the course of cellular processes maintaining the whole body’s homeostasis. As there is a growing interest in transplanting mesenchymal stromal cells (MSCs) into the site of injury to improve the regeneration of damaged tendons, the purpose of the study was to verify whether copper supplementation may have a positive effect on the properties of human adipose tissue-derived MSCs (hASCs) which potentially can contribute to improvement of tendon healing. Results. Cellular respiration of hASCs decreased with increasing cupric sulfate concentrations after 5 days of incubation. The treatment with CuSO4 did not positively affect the expression of genes associated with tenogenesis (COL1α1, COL3α1, MKX, and SCX). However, the level of COL1α1 protein, whose transcript was decreased in comparison to a control, was elevated after a 5-day exposition to 25 μM CuSO4. The content of the MKX and SCX protein in hASCs exposed to cupric sulfate was reduced compared to that of untreated control cells, and the level of the COL3α1 protein remained unchanged. The addition of cupric sulfate to hASCs’ medium increased the activity of lysyl oxidase which was positively correlated with concentration of CuSO4. Moreover, a high level of CuSO4 stimulated the action of intracellular superoxide dysmutase. The hASC secretion profile after a 5-day exposure to 50 μM cupric sulfate differed from that of untreated cells and was similar to the secretion profile of human tenocytes. Additionally, cupric sulfate increased secretion of CXCL12 in hASCs. Furthermore, the exposition to the CuSO4 significantly increased directed migration of human ASCs in a dose-dependent manner. Conclusion. Copper sulfate supplementation can have a beneficial effect on tendon regeneration not by inducing tenogenic differentiation, but by improving the recruitment of MSCs to the site of injury, where they can secrete growth factors, cytokines and chemokines, and prevent the effects of oxidative stress at the site of inflammation, as well as improve the stabilization of collagen fibers, thereby accelerating the process of tendon healing

    The Influence of Cell Source and Donor Age on the Tenogenic Potential and Chemokine Secretion of Human Mesenchymal Stromal Cells

    No full text
    Background. Cellular therapy is proposed for tendinopathy treatment. Bone marrow- (BM-MSC) and adipose tissue- (ASC) derived mesenchymal stromal cells are candidate populations for such a therapy. The first aim of the study was to compare human BM-MSCs and ASCs for their basal expression of factors associated with tenogenesis as well as chemotaxis. The additional aim was to evaluate if the donor age influences these features. Methods. Cells were isolated from 24 human donors, 8 for each group: hASC, hBM-MSC Y (age≤45), and hBM-MSC A (age>45). The microarray analysis was performed on RNA isolated from hASC and hBM-MSC A cells. Based on microarray results, 8 factors were chosen for further evaluation. Two genes were additionally included in the analysis: SCLERAXIS and PPARγ. All these 10 factors were tested for gene expression by the qRT-PCR method, and all except of RUNX2 were additionally evaluated for protein expression or secretion. Results. Microarray analysis showed over 1,400 genes with a significantly different expression between hASC and hBM-MSC groups. Eight of these genes were selected for further analysis: CXCL6, CXCL12, CXCL16, TGF-β2, SMAD3, COLLAGEN 14A1, MOHAWK, and RUNX2. In the subsequent qRT-PCR analysis, hBM-MSCs showed a significantly higher expression than did hASCs in following genes: CXCL12, CXCL16, TGF-β2, SMAD3, COLLAGEN 14A1, and SCLERAXIS (p<0.05, regardless of BM donor age). In the case of CXCL12, the difference between hASC and hBM-MSC was significant only for younger BM donors, whereas for COLLAGEN 14A1—only for elder BM donors. PPARγ displayed a higher expression in hASCs compared to hBM-MSCs. In regard to CXCL6, MOHAWK, and RUNX2 gene expression, no statistically significant differences between groups were observed. Conclusions. In the context of cell-based therapy for tendinopathies, bone marrow appears to be a more attractive source of MSCs than does adipose tissue. The age of cell donors seems to be less important than cell source, although cells from elder donors show slightly higher basal tenogenic potential than do cells from younger donors

    Renal cancer secretome induces migration of mesenchymal stromal cells

    No full text
    Abstract Background Advanced renal cell carcinoma (RCC) is therapeutically challenging. RCC progression is facilitated by mesenchymal stem/stromal cells (MSCs) that exert remarkable tumor tropism. The specific mechanisms mediating MSCs’ migration to RCC remain unknown. Here, we aimed to comprehensively analyze RCC secretome to identify MSCs attractants. Methods Conditioned media (CM) were collected from five RCC-derived cell lines (Caki-1, 786-O, A498, KIJ265T and KIJ308T) and non-tumorous control cell line (RPTEC/TERT1) and analyzed using cytokine arrays targeting 274 cytokines in addition to global CM proteomics. MSCs were isolated from bone marrow of patients undergoing standard orthopedic surgeries. RCC CM and the selected recombinant cytokines were used to analyze their influence on MSCs migration and microarray-targeted gene expression. The expression of genes encoding cytokines was evaluated in 100 matched-paired control-RCC tumor samples. Results When compared with normal cells, CM from advanced RCC cell lines (Caki-1 and KIJ265T) were the strongest stimulators of MSCs migration. Targeted analysis of 274 cytokines and global proteomics of RCC CM revealed decreased DPP4 and EGF, as well as increased AREG, FN1 and MMP1, with consistently altered gene expression in RCC cell lines and tumors. AREG and FN1 stimulated, while DPP4 attenuated MSCs migration. RCC CM induced MSCs’ transcriptional reprogramming, stimulating the expression of CD44, PTX3 and RAB27B. RCC cells secreted hyaluronic acid (HA), a CD44 ligand mediating MSCs’ homing to the kidney. AREG emerged as an upregulator of MSCs’ transcription. Conclusions Advanced RCC cells secrete AREG, FN1 and HA to induce MSCs migration, while DPP4 loss prevents its inhibitory effect on MSCs homing. RCC secretome induces MSCs’ transcriptional reprograming to facilitate their migration. The identified components of RCC secretome represent potential therapeutic targets. Graphical abstrac
    corecore