25 research outputs found

    Cdc42 protein acts upstream of IQGAP1 and regulates cytokinesis in mouse oocytes and embryos

    Get PDF
    AbstractCdc42 and Rac1 Rho family GTPases, and their interacting protein IQGAP1 are the key regulators of cell polarity. We examined the role of Cdc42 and IQGAP1 in establishing the polarity of mouse oocyte and regulation of meiotic and mitotic divisions. We showed that Cdc42 was localized on the microtubules of meiotic and mitotic spindle and in the cortex of mouse oocytes and cleaving embryos. IQGAP1 was present in the cytoplasm and cortex of growing and fully-grown oocytes. During maturation it disappeared from the cortex and during meiotic and mitotic cytokinesis it concentrated in the contractile ring. Toxin B inhibition of the binding activity of Cdc42 changed the localization of IQGAP1, inhibited emission of the first polar body, and caused disappearance of the cortical actin without affecting the migration of meiotic spindle. This indicates, that in maturing oocytes accumulation of cortical actin is not indispensable for spindle migration. In zygotes treated with toxin B actin cytoskeleton was rearranged and the first and/or subsequent cytokinesis were inhibited. Our results indicate that Cdc42 acts upstream of IQGAP1 and is involved in regulation of cytokinesis in mouse oocytes and cleaving embryos, rather than in establishing the polarity of the oocyte

    Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome

    No full text
    The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process

    Curcumin induces cell death without oligonucleosomal DNA fragmentation in quiescent and proliferating human CD8+ cells

    No full text
    Cytotoxic CD8+ cells play an important role in determining host response to tumor, thus chemotherapy is potentially dangerous as it may lead to T cells depletion. The purpose of this study was to elucidate the propensity of quiescent and proliferating human CD8+ cells to undergo cell death upon treatment with curcumin, a natural dye in Phase I of clinical trials as a prospective chemopreventive agent. Methods: We treated human quiescent or proliferating CD8+ cells with 50 µM curcumin or irradiated them with UVC. Cell death symptoms such as decreased cell viability, chromatin condensation, activation of caspase-3 and specific DFF40/CAD endonuclease and oligonucleosomal DNA fragmentation were analyzed using MTT test, microscopic observation, Western blotting and flow cytometry. Results: Curcumin decreased cell viability, activated caspase-3 and decreased the level of DFF45/ICAD, the inhibitor of the DFF40/CAD endonuclease. However, this did not lead to oligonucleosomal DNA degradation. In contrast, UVC-irradiated proliferating, but not quiescent CD8+ cells revealed molecular and morphological changes characteristic for apoptosis, including oligonucleosomal DNA fragmentation. Curcumin can induce cell death in normal human lymphocytes both quiescent and proliferating, without oligonucleosomal DNA degradation which is considered as a main hallmark of apoptotic cell death. Taking into account the role of CD8+ cells in tumor response, their depletion during chemotherapy could be particularly undesirable

    The Role of Curcumin in the Modulation of Ageing

    No full text
    It is believed that postponing ageing is more effective and less expensive than the treatment of particular age-related diseases. Compounds which could delay symptoms of ageing, especially natural products present in a daily diet, are intensively studied. One of them is curcumin. It causes the elongation of the lifespan of model organisms, alleviates ageing symptoms and postpones the progression of age-related diseases in which cellular senescence is directly involved. It has been demonstrated that the elimination of senescent cells significantly improves the quality of life of mice. There is a continuous search for compounds, named senolytic drugs, that selectively eliminate senescent cells from organisms. In this paper, we endeavor to review the current knowledge about the anti-ageing role of curcumin and discuss its senolytic potential

    DNA damage-independent apoptosis induced by curcumin in normal resting human T cells and leukaemic Jurkat cells

    No full text
    Curcumin, a phytochemical derived from the rhizome of Curcuma longa, is a very potent inducer of cancer cell death. It is believed that cancer cells are more sensitive to curcumin treatment than normal cells. Curcumin has been shown to act as a prooxidant and induce DNA lesions in normal cells. We were interested in whether curcumin induces DNA damage and the DNA damage response (DDR) signalling pathway leading to apoptosis in normal resting human T cells. To this end, we analysed DNA damage after curcumin treatment of resting human T cells (CD3+) and of proliferating leukaemic Jurkat cells by the fluorimetric detection of alkaline DNA unwinding (FADU) assay and immunocytochemical detection of γ-H2AX foci. We showed that curcumin-treated Jurkat cells and resting T cells showed neither DNA lesions nor did they activate key proteins in the DDR signalling pathway, such as phospho-ATM and phospho-p53. However, both types of cell were equally sensitive to curcumin-induced apoptosis and displayed activation of caspase-8 but not of DNA damage-dependent caspase-2. Altogether, our results revealed that curcumin can induce apoptosis of normal resting human T cells that is not connected with DNA damage

    Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells

    No full text
    It is believed that normal cells with an unaffected DNA damage response (DDR) and DNA damage repair machinery, could be less prone to DNA damaging treatment than cancer cells. However, the anticancer drug, etoposide, which is a topoisomerase II inhibitor, can generate DNA double strand breaks affecting not only replication but also transcription and therefore can induce DNA damage in non-replicating cells. Indeed, we showed that etoposide could influence transcription and was able to activate DDR in resting human T cells by inducing phosphorylation of ATM and its substrates, H2AX and p53. This led to activation of PUMA, caspases and to apoptotic cell death. Lymphoblastoid leukemic Jurkat cells, as cycling cells, were more sensitive to etoposide considering the level of DNA damage, DDR and apoptosis. Next, we used ATM inhibitor, KU 55933, which has been shown previously to be a radio/chemo-sensitizing agent. Pretreatment of resting T cells with KU 55933 blocked phosphorylation of ATM, H2AX and p53, which, in turn, prevented PUMA expression, caspase activation and apoptosis. On the other hand, KU 55933 incremented apoptosis of Jurkat cells. However, etoposide-induced DNA damage in resting T cells was not influenced by KU 55933 as revealed by the FADU assay. Altogether our results show that KU 55933 blocks DDR and apoptosis induced by etoposide in normal resting T cells, but increased cytotoxic effect on proliferating leukemic Jurkat cells. We discuss the possible beneficial and adverse effects of drugs affecting the DDR in cancer cells that are currently in preclinical anticancer trials
    corecore