3 research outputs found

    Application of the Tomtit Flock Metaheuristic Optimization Algorithm to the Optimal Discrete Time Deterministic Dynamical Control Problem

    No full text
    A new bio-inspired method for optimizing the objective function on a parallelepiped set of admissible solutions is proposed. It uses a model of the behavior of tomtits during the search for food. This algorithm combines some techniques for finding the extremum of the objective function, such as the memory matrix and the Levy flight from the cuckoo algorithm. The trajectories of tomtits are described by the jump-diffusion processes. The algorithm is applied to the classic and nonseparable optimal control problems for deterministic discrete dynamical systems. This type of control problem can often be solved using the discrete maximum principle or more general necessary optimality conditions, and the Bellman’s equation, but sometimes it is extremely difficult or even impossible. For this reason, there is a need to create new methods to solve these problems. The new metaheuristic algorithm makes it possible to obtain solutions of acceptable quality in an acceptable time. The efficiency and analysis of this method are demonstrated by solving a number of optimal deterministic discrete open-loop control problems: nonlinear nonseparable problems (Luus–Tassone and Li–Haimes) and separable problems for linear control dynamical systems

    Application of the Tomtit Flock Metaheuristic Optimization Algorithm to the Optimal Discrete Time Deterministic Dynamical Control Problem

    No full text
    A new bio-inspired method for optimizing the objective function on a parallelepiped set of admissible solutions is proposed. It uses a model of the behavior of tomtits during the search for food. This algorithm combines some techniques for finding the extremum of the objective function, such as the memory matrix and the Levy flight from the cuckoo algorithm. The trajectories of tomtits are described by the jump-diffusion processes. The algorithm is applied to the classic and nonseparable optimal control problems for deterministic discrete dynamical systems. This type of control problem can often be solved using the discrete maximum principle or more general necessary optimality conditions, and the Bellman’s equation, but sometimes it is extremely difficult or even impossible. For this reason, there is a need to create new methods to solve these problems. The new metaheuristic algorithm makes it possible to obtain solutions of acceptable quality in an acceptable time. The efficiency and analysis of this method are demonstrated by solving a number of optimal deterministic discrete open-loop control problems: nonlinear nonseparable problems (Luus–Tassone and Li–Haimes) and separable problems for linear control dynamical systems

    Optimal Open-Loop Control of Discrete Deterministic Systems by Application of the Perch School Metaheuristic Optimization Algorithm

    No full text
    A new hybrid metaheuristic method for optimizing the objective function on a parallelepiped set of admissible solutions is proposed. It mimics the behavior of a school of river perch when looking for food. The algorithm uses the ideas of several methods: a frog-leaping method, migration algorithms, a cuckoo algorithm and a path-relinking procedure. As an application, a wide class of problems of finding the optimal control of deterministic discrete dynamical systems with a nonseparable performance criterion is chosen. For this class of optimization problems, it is difficult to apply the discrete maximum principle and its generalizations as a necessary optimality condition and the Bellman equation as a sufficient optimality condition. The desire to extend the class of problems to be solved to control problems of trajectory bundles and stochastic problems leads to the need to use not only classical adaptive random search procedures, but also new approaches combining the ideas of migration algorithms and swarm intelligence methods. The efficiency of this method is demonstrated and an analysis is performed by solving several optimal deterministic discrete control problems: two nonseparable problems (Luus–Tassone and LiHaimes) and five classic linear systems control problems with known exact solutions
    corecore