25 research outputs found

    Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus <it>Leucocoprinus gongylophorus </it>that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth.</p> <p>Results</p> <p>We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in <it>Acromyrmex echinatior </it>leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade.</p> <p>Conclusions</p> <p>Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by <it>Acromyrmex </it>leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.</p

    Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    Get PDF
    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated

    Induction of human T-cell and cytokine responses following vaccination with a novel influenza vaccine

    No full text
    Cell mediated immunity plays a vital role in defense against influenza infection in humans. Less is known about the role of vaccine-induced cell mediated immunity and the cytokine responses elicited. We measured CD4+ and CD8+ T-cell reactivity in human subjects following vaccination with licensed trivalent influenza vaccine and a novel virus-like particle based vaccine. We detected influenza-specific CD4+ T-cell responses following vaccination with the licensed trivalent influenza vaccine and found that these correlated with antibody measurements. Administration of the novel virus-like particle based vaccine elicited influenza-specific CD4+ and CD8+ T-cell responses and the induction of the cytokines IFN-γ, IL-17A, IL17F, IL-5, IL-13, IL-9, IL-10 and IL-21. Pre-existing cytokine responses influenced the profile of the cytokine response elicited by vaccination. In a subset of individuals the VLP vaccine changed pre-vaccination production of type 2 cytokines such as IL-5 and IL-13 to a post-vaccination type 1 cytokine signature characterized by IFN-γ. A transcriptional signature to vaccination was found to correlate with antibody titer, IFN-γ production by T-cells and expression of a putative RNA helicase, DDX17, on the surface of immune cells

    Retrospektive Katalogkonversion. Probleme und Möglichkeiten

    No full text
    corecore