3 research outputs found

    Experimental analysis of the pore structure, relative permeability, and water flooding characteristics of the Yan'an Formation sandstone, southwestern Ordos Basin

    No full text
    The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs

    Characterization of Residual Oil Distribution in Sandstone by NMR: A Microscopic View on Oil Recovery by Miscible CO2 Flooding

    No full text
    AbstractMiscible CO2 flooding gains rising popularity due to high displacement efficiency and potential carbon negativity. It is well documented that pore-level heterogeneity is one of the dominant mechanisms responsible for the variation in oil recovery efficiencies of miscible CO2 flooding. However, owing to a lack of understanding of miscible CO2 displacement behaviors at pore level, quantitative analysis of the mechanisms for the influence of pore-level heterogeneity on the oil recovery efficiency of miscible CO2 flooding remains problematical. Recently, NMR has been widely used to investigate microscopic residual oil distribution and pore-level displacement behaviors of various agents. Nevertheless, current NMR-based methods for determining microscopic residual oil distribution require the use of fluorinated oil, Mn2+ solution, or heavy water for eliminating the mutual interference of oil and water NMR signals. The differences in properties of reservoir fluids and additional agents could give rise to the change in displacement characteristics and consequently affect the analysis results on pore-level displacement behaviors. In this study, a method to determine microscopic residual oil distribution in sandstone during gas floodings based on NMR T2 spectrum without additional agents except reservoir fluids is proposed. Using the method, we can avoid the possible changes in the displacement characteristics caused by additional agents. Miscible CO2 flooding experiments are conducted with ultra-low and extra-low permeability cores. The T2 spectra of cores before and after flooding are measured using a 23 MHz low-field NMR instrument. Residual oil distributions in cores are quantitatively characterized using the proposed method, and then, oil recovery efficiencies from different-sized pore throats are evaluated. It is found that for both cores about 60% of the residual oil is distributed in pore throats with &lt;0.26 μm radius. Oil residing in pore throats with &gt;0.03 μm radius is displaceable for miscible CO2 flooding, which indicates that the thickness of the raffinate layer in the pore should be less than 0.015 μm. More than 30% of the residual oil is distributed in unswept areas, and thus, the sweep efficiency improvement is expected to effectively enhance the oil recovery of miscible CO2 flooding. The sweep efficiency is negatively affected by the pore-size heterogeneity. For the ultra-low and extra-low permeability cores, the standard deviation of pore size is 0.39 and 1.15, respectively, and correspondingly, the sweep efficiency is 84.33% and 72.84%, respectively. In the core, the oil recovery efficiencies from swept pore throats with &lt;3 μm radius are similar and exceed 50%. Pore throats with &gt;3 μm radius can form a preferred flow path, which will significantly reduce the oil displacement efficiency from swept pore throats with &lt;3 μm radius. The findings of this study can help for better understanding of the microscopic CO2 miscible displacement behaviors and the mechanisms for the influence of pore-level heterogeneity on the oil recovery efficiency of miscible CO2 flooding
    corecore