11 research outputs found
Integrin β3 Mediates the Endothelial-to-Mesenchymal Transition via the Notch Pathway
Background/Aims: Neointimal hyperplasia is responsible for stenosis, which requires corrective vascular surgery, and is also a major morphological feature of many cardiovascular diseases. This hyperplasia involves the endothelial-to-mesenchymal transition (EndMT). We investigated whether integrin β3 can modulate the EndMT, as well as its underlying mechanism. Methods: Integrin β3 was overexpressed or knocked down in human umbilical vein endothelial cells (HUVECs). The expression of endothelial markers and mesenchymal markers was determined by real-time reverse transcription PCR (RT-PCR), immunofluorescence staining, and western blot analysis. Notch signaling pathway components were detected by real-time RT-PCR and western blot analysis. Cell mobility was evaluated by wound-healing, Transwell, and spreading assays. Fibroblast-specific protein 1 (FSP-1) promoter activity was determined by luciferase assay. Results: Transforming growth factor (TGF)-β1 treatment or integrin β3 overexpression significantly promoted the EndMT by downregulating VE-cadherin and CD31 and upregulating smooth muscle actin α and FSP-1 in HUVECs, and by enhancing cell migration. Knockdown of integrin β3 reversed these effects. Notch signaling was activated after TGF-β1 treatment of HUVECs. Knockdown of integrin β3 suppressed TGF-β1-induced Notch activation and expression of the Notch downstream target FSP-1. Conclusion: Integrin β3 may promote the EndMT in HUVECs through activation of the Notch signaling pathway
Exploring m6A‐RNA methylation as a potential therapeutic strategy for acute lung injury and acute respiratory distress syndrome
Abstract N6‐methyladenosine (m6A) is the most common methylation modification in mammalian messenger RNA (mRNA) and noncoding RNAs. m6A modification plays a role in the regulation of gene expression and deregulation of m6A methylation has been implicated in many human diseases. Recent publications suggest that exploitation of this methylation process may possess utility against acute lung injury (ALI). ALI and its more severe form, acute respiratory distress syndrome (ARDS) are acute, inflammatory clinical syndromes characterized by poor oxygenation and diffuse pulmonary infiltrates. This syndrome is associated with microvascular endothelial dysfunction, subsequent pulmonary hypertension and may ultimately lead to mortality without rigorous and acute clinical intervention. Over the years, many attempts have been made to detect novel therapeutic avenues for research without much success. The urgency for the discovery of novel therapeutic agents has become more pronounced recently given the current pandemic infection of coronavirus disease 2019 (COVID‐2019), still ongoing at the time that this review is being written. We review the current landscape of literature regarding ALI and ARDS etiology, pathophysiology, and therapeutics and present a potential role of m6A methylation. Additionally, we will establish the axiomatic principles of m6A methylation to provide a framework. In conclusion, METTL3, or methyltransferase‐like 3, the selective RNA methyltransferase for m6A, is a hub of proinflammatory gene expression regulation in ALI, and using a modern drug discovery strategy will identify new and effective ALI drug candidates targeting METTTL3
Free Radical–Associated Gene Signature Predicts Survival in Sepsis Patients
Sepsis continues to overwhelm hospital systems with its high mortality rate and prevalence. A strategy to reduce the strain of sepsis on hospital systems is to develop a diagnostic/prognostic measure that identifies patients who are more susceptible to septic death. Current biomarkers fail to achieve this outcome, as they only have moderate diagnostic power and limited prognostic capabilities. Sepsis disrupts a multitude of pathways in many different organ systems, making the identification of a single powerful biomarker difficult to achieve. However, a common feature of many of these perturbed pathways is the increased generation of reactive oxygen species (ROS), which can alter gene expression, changes in which may precede the clinical manifestation of severe sepsis. Therefore, the aim of this study was to evaluate whether ROS-related circulating molecular signature can be used as a tool to predict sepsis survival. Here we created a ROS-related gene signature and used two Gene Expression Omnibus datasets from whole blood samples of septic patients to generate a 37-gene molecular signature that can predict survival of sepsis patients. Our results indicate that peripheral blood gene expression data can be used to predict the survival of sepsis patients by assessing the gene expression pattern of free radical–associated -related genes in patients, warranting further exploration
PTK2-associated gene signature could predict the prognosis of IPF
Abstract Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with a poor prognosis. Current/available clinical prediction tools have limited sensitivity and accuracy when evaluating clinical outcomes of IPF. Research has shown that focal adhesion kinase (FAK), produced by the protein tyrosine kinase 2 (PTK2) gene, is crucial in IPF development. FAK activation is a characteristic of lesional fibroblasts; Thus, FAK may be a valuable therapeutic target or prognostic biomarker for IPF. This study aimed to create a gene signature based on PTK2-associated genes and microarray data from blood cells to predict disease prognosis in patients with IPF. PTK2 levels were found to be higher in lung tissues of IPF patients compared to healthy controls, and PTK2 inhibitor Defactinib was found to reduce TGFβ-induced FAK activation and increase α-smooth muscle actin. Although the blood PTK2 levels were higher in IPF patients, blood PTK level alone could not predict IPF prognosis. From 196 PTK2-associated genes, 11 genes were prioritized to create a gene signature (PTK2 molecular signature) and a risk score system using univariate and multivariate Cox regression analysis. Patients were divided into high-risk and low-risk groups using PTK2 molecular signature. Patients in the high-risk group experienced decreased survival rates compared to patients in the low-risk group across all discovery and validation cohorts. Further functional enrichment and immune cell proportion analyses revealed that the PTK2 molecular signature strongly reflected the activation levels of immune pathways and immune cells. These findings suggested that PTK2 is a molecular target of IPF and the PTK2 molecular signature is an effective IPF prognostic biomarker