142 research outputs found

    Summary of LIFE Delivery Plan

    Get PDF

    LIFE: Recent Developments and Progress

    Get PDF
    Test results from the NIF show excellent progress toward achieving ignition. Experiments designed to verify coupling of the laser energy to the fusion target have shown that the efficiency meets that needed for ignition. Several tests with the cryogenic targets needed for ignition have been performed, and world-record neutron output produced. The National Ignition Campaign is on schedule to meet its 2012 ignition milestone, with the next phase in the campaign due to start later this month. It has been a busy and very productive year. The NIF is in full 24/7 operations and has progressed markedly in the path toward ignition. The long-standing goal of the National Ignition Campaign to demonstrate ignition by the end of FY 2012 is on track. The LIFE plant design has matured considerably, and a delivery plan established based on close interactions with vendors. National-level reviews of fusion are underway, and are due to present initial findings later this year. A value proposition has been drafted for review. The LIFE project is ready to move into the delivery phase

    LIFE Plant Capital Cost / Response to a question raised by the Target Physics Panel of the NRC Review of Inertial Fusion Energy

    Full text link
    Abstract not provide

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore