5 research outputs found

    Evolution of prokaryotic SPFH proteins

    Get PDF
    BACKGROUND: The SPFH protein superfamily is a diverse family of proteins whose eukaryotic members are involved in the scaffolding of detergent-resistant microdomains. Recently the origin of the SPFH proteins has been questioned. Instead, convergent evolution has been proposed. However, an independent, convergent evolution of three large prokaryotic and three eukaryotic families is highly unlikely, especially when other mechanisms such as lateral gene transfer which could also explain their distribution pattern have not yet been considered.To gain better insight into this very diverse protein family, we have analyzed the genomes of 497 microorganisms and investigated the pattern of occurrence as well as the genomic vicinity of the prokaryotic SPFH members. RESULTS: According to sequence and operon structure, a clear division into 12 subfamilies was evident. Three subfamilies (SPFH1, SPFH2 and SPFH5) show a conserved operon structure and two additional subfamilies are linked to those three through functional aspects (SPFH1, SPFH3, SPFH4: interaction with FtsH protease). Therefore these subgroups most likely share common ancestry. The complex pattern of occurrence among the different phyla is indicative of lateral gene transfer. Organisms that do not possess a single SPFH protein are almost exclusively endosymbionts or endoparasites. CONCLUSION: The conserved operon structure and functional similarities suggest that at least 5 subfamilies that encompass almost 75% of all prokaryotic SPFH members share a common origin. Their similarity to the different eukaryotic SPFH families, as well as functional similarities, suggests that the eukaryotic SPFH families originated from different prokaryotic SPFH families rather than one. This explains the difficulties in obtaining a consistent phylogenetic tree of the eukaryotic SPFH members. Phylogenetic evidence points towards lateral gene transfer as one source of the very diverse patterns of occurrence in bacterial species

    Biochemical and Genetic Investigation of Initial Reactions in Aerobic Degradation of the Bile Acid Cholate in Pseudomonas sp. Strain Chol1â–ż

    No full text
    Bile acids are surface-active steroid compounds with toxic effects for bacteria. Recently, the isolation and characterization of a bacterium, Pseudomonas sp. strain Chol1, growing with bile acids as the carbon and energy source was reported. In this study, initial reactions of the aerobic degradation pathway for the bile acid cholate were investigated on the biochemical and genetic level in strain Chol1. These reactions comprised A-ring oxidation, activation with coenzyme A (CoA), and β-oxidation of the acyl side chain with the C19-steroid dihydroxyandrostadienedione as the end product. A-ring oxidizing enzyme activities leading to Δ1,4-3-ketocholyl-CoA were detected in cell extracts and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cholate activation with CoA was demonstrated in cell extracts and confirmed with a chemically synthesized standard by LC-MS/MS. A transposon mutant with a block in oxidation of the acyl side chain accumulated a steroid compound in culture supernatants which was identified as 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) by nuclear magnetic resonance spectroscopy. The interrupted gene was identified as encoding a putative acyl-CoA-dehydrogenase (ACAD). DHOPDC activation with CoA in cell extracts of strain Chol1 was detected by LC-MS/MS. The growth defect of the transposon mutant could be complemented by the wild-type ACAD gene located on the plasmid pBBR1MCS-5. Based on these results, the initiating reactions of the cholate degradation pathway leading from cholate to dihydroxyandrostadienedione could be reconstructed. In addition, the first bacterial gene encoding an enzyme for a specific reaction step in side chain degradation of steroid compounds was identified, and it showed a high degree of similarity to genes in other steroid-degrading bacteria

    THE ORGANISATION OF THE INSTRUMENT PREPARATION OF PRODUCTION AT THE EARLY STAGES OF THE ITEM MAKING

    Get PDF
    The scientific principles of building of the organisation forms of the production preparation have been developed, theoretically justified has been the application of the parallel-consequence form of organisation of the instrument preparation of the production at the early stages of the item producing. The complex of methods, realizing the functions of organisation of the production instrument preparation, using the methods of optimization of the organisation decisions has been developed. This will allow to give the effective evaluation of the variants of equipment and to design its optimum volume. Decision of the problem of the optimum equipment selection, the design of the optimum volumes of the equipment at the early stages of the item make have been accepted for use in the Permsky Unit Design Bureau. The methodical developments on the organisation and economic aspects have been introduced in the study processAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    corecore