4 research outputs found

    Influence of biological sex, age and smoking on Graves’ orbitopathy – a ten-year tertiary referral center analysis

    Get PDF
    PurposeSeverity of Graves’ orbitopathy (GO) shows wide individual differences. For optimal treatment, it is important to be able to predict the natural course of the disease as accurate as possible to counteract with anti-inflammatory and surgical treatment. Therefore, we aimed to further elucidate the impact of sex, age and smoking on GO.MethodsWe collected the clinical and demographic data of all patients of our tertiary referral center from January 2008 till December 2018 and analyzed it with descriptive statistics. Only patients with a complete data set were included in the further analysis. Odds ratio’s for moderate-to-severe and sight-threatening GO in relation to age, sex and smoking were calculated by means of multivariate logistic regression models.ResultsWe evaluated the data of 4260 patient with GO and complete data sets. Most of these were women (83%). There were no significant differences between male and female patients regarding smoking habits and thyroid treatment. Men were significantly older at initial manifestation of TED (51.8 vs. 49.9y, p<0.01) and showed significant more often severe stages (61% vs. 53%, p<0.0001). Therefore, they needed significantly more intense treatment with steroids, irradiation, orbital decompression and muscle surgery. In multivariate logistic regression analyses age (OR 0.97, 95% CI:0.97-0.98, p<0.0001), male sex (OR 1.64, 95% CI:1.38-1.9, p<0.0001), smoking (OR 1.19, 95% CI:1.04-1.36, p=0.01), Grave’s disease (OR 1.55, 95% CI:1.26-1.90, p<0.0001) and history of radioiodine treatment (RAI) (OR 2.44, 95% CI:2.10-2.86, p<0.0001) showed an significant association with severe stages of GO.DiscussionOur retrospective analysis showed once more that women are more often afflicted by GO. In contrast, men seem to be more severely afflicted and in need of anti-inflammatory and surgical treatments. This might be due to a different approach to the health system and resilience to GO specific symptoms, as well as previously described worse thyroid control. Estrogen mediated effects might also play a role as in other autoimmune diseases and should be subject of further trials. Besides the biological sex, smoking could again be confirmed as serious risk factor for severe GO. Of note, RAI was associated with more severe stages of GO, which should be subject to further investigation

    Potential involvement of the bone marrow in experimental Graves’ disease and thyroid eye disease

    Get PDF
    IntroductionGraves’ disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves’ disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves’ disease and TED is unknown. Here, we investigated whether induction of experimental Graves’ disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation.ResultsImmunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib.ConclusionCollectively, these data indicate that the bone marrow is activated in experimental Graves’ disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition

    Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease

    Get PDF
    IntroductionGraves’ disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED.MethodsLinsitinib was administered orally for four weeks with therapy initiating in either the early (“active”) or the late (“chronic”) phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit.ResultsLinsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue.ConclusionHere, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves’ disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves’ Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease

    Proposing a surgical algorithm for graduated orbital decompression in patients with Graves’ orbitopathy

    No full text
    Purpose!#!To determine the outcome after orbital decompression using a graduated technique, adapting the surgical technique according to individual patients' disease characteristics.!##!Methods!#!We retrospectively examined the postoperative outcome in patients treated with a graduated balanced orbital decompression regarding reduction of proptosis, new onset diplopia and improvement in visual function. 542 patients (1018 orbits) were treated between 2012 and 2020 and included in the study. Clinical examinations including visual acuity, exophthalmometry (Hertel) and orthoptic evaluation were performed preoperatively and at minimum 6 weeks postoperatively. Mean follow-up was 22.9 weeks.!##!Results!#!Mean proptosis values have significantly decreased after surgery (p < 0.01). In 83.3% of the patients Hertel measurement normalized (≤ 18 mm) after surgery, New onset diplopia within 20° of primary position occurred in 33.0% of patients, of whom 16.0% had preoperative double vision in secondary gaze. Patients suffering from dysthyroid optic neuropathy (DON) had a significant increase in visual acuity (p < 0.01).!##!Conclusion!#!We demonstrated that individually adapted graduated orbital decompression successfully improves key disease parameters of Graves' orbitopathy with low morbidity
    corecore