23 research outputs found

    Establishment and application of a VP3 antigenic domain-based peptide ELISA for the detection of antibody against goose plague virus infection

    Get PDF
    The detection of antibody against goose plague virus (GPV) infection has never had a commercialized test kit, which has posed challenges to the prevention and control of this disease. In this study, bioinformatics software was used to analyze and predict the dominant antigenic regions of the main protective antigen VP3 of GPV. Three segments of bovine serum albumin (BSA) vector-coupled peptides were synthesized as ELISA coating antigens. Experimental results showed that the VP3-1 (358-392aa) peptide had the best reactivity and specificity. By using the BSA-VP3-1 peptide, a detection method for antibody against GPV infection was established, demonstrating excellent specificity with no cross-reactivity with common infectious goose pathogen antibodies. The intra-batch coefficient of variation and inter-batch coefficient of variation were both less than 7%, indicating good stability and repeatability. The dynamic antibody detection results of gosling vaccines and the testing of 120 clinical immune goose serum samples collectively demonstrate that BSA-VP3-1 peptide ELISA can be used to detect antibody against GPV in the immunized goose population and has higher sensitivity than traditional agar gel precipitation methods. Taken together, the developed peptide-ELISA based on VP3 358-392aa could be useful in laboratory viral diagnosis, routine surveillance in goose farms. The main application of the peptide-ELISA is to monitor the antibody level and vaccine efficacy for GPV, which will help the prevention and control of gosling plague

    Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices

    Get PDF
    Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study

    Security protection of neighborhood area networks in smart grid systems

    No full text
    As the smart grid technologies come into practice, the wireless mesh networks with EMSA security protocols are fast developing to keep pace of the next generation electricity grid system. The EMSA security protocols provide security guarantee for the communication process in wireless mesh networks. EMSA was first proposed in IEEE 802.11s standard in July, 2011. Since then, several strategies and algorithms were put forward to improve the performance of EMSA security protocols. One of these is the dynamic updating key strategy raised by Junguo Liao and Mingyan Wang. Although this proposal improved the efficiency performance of the EMSA security protocol, it still has the problem of lack of protection mechanism. In the project, we analyze the threats and attacks in the dynamic key updating strategy based on EMSA and make some modification for it, in order to make it perform better under high attack probability situation. In the end, we use the CSP module in PAT to verify the security protocol and simulate it in MATLAB.Master of Science (Communications Engineering

    Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

    No full text
    This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable. Keywords: Propeller, Oblique flow, Panel method, Slipstream, Hydrodynamic performanc

    Grid-Free Modelling Based on the Finite Particle Method for Incompressible Viscous Flow Problems

    No full text
    In this paper, we present a grid-free modelling based on the finite particle method for the numerical simulation of incompressible viscous flows. Numerical methods of interest are meshless Lagrangian finite point scheme by the application of the projection method for the incompressibility of the Navier–Stokes flow equations. The moving least squares method is introduced for approximating spatial derivatives in a meshless context. The pressure Poisson equation with Neumann boundary condition is solved by the finite particle method in which the fluid domain is discretized by a finite number of particles. Also, a continuous particle management has to be done to prevent particles from moving into configurations problematic for a numerical approximation. With the proposed finite particle technique, problems associated with the viscous free surface flow which contains the study on the liquid sloshing in tanks with low volumetric fluid type, solitary waves movement, and interaction with a vertical wall in numerical flume as well as the vortex patterns of the ship rolling damping are circumvented. These numerical models are investigated to validate the presented grid-free methodology. The results have revealed the efficiency and stability of the finite particle method which could be well handled with the incompressible viscous flow problems

    Modeling of DNA Damage Repair and Cell Response in Relation to p53 System Exposed to Ionizing Radiation

    No full text
    Repair of DNA damage induced by ionizing radiation plays an important role in the cell response to ionizing radiation. Radiation-induced DNA damage also activates the p53 system, which determines the fate of cells. The kinetics of repair, which is affected by the cell itself and the complexity of DNA damage, influences the cell response and fate via affecting the p53 system. To mechanistically study the influences of the cell response to different LET radiations, we introduce a new repair module and a p53 system model with NASIC, a Monte Carlo track structure code. The factors determining the kinetics of the double-strand break (DSB) repair are modeled, including the chromosome environment and complexity of DSB. The kinetics of DSB repair is modeled considering the resection-dependent and resection-independent compartments. The p53 system is modeled by simulating the interactions among genes and proteins. With this model, the cell responses to low- and high-LET irradiation are simulated, respectively. It is found that the kinetics of DSB repair greatly affects the cell fate and later biological effects. A large number of DSBs and a slow repair process lead to severe biological consequences. High-LET radiation induces more complex DSBs, which can be repaired by slow processes, subsequently resulting in a longer cycle arrest and, furthermore, apoptosis and more secreting of TGFβ. The Monte Carlo track structure simulation with a more realistic repair module and the p53 system model developed in this study can expand the functions of the NASIC code in simulating mechanical radiobiological effects

    Application of Advanced Oxidation Technology in Sludge Conditioning and Dewatering: A Critical Review

    No full text
    Sludge dewatering is an important link in sludge treatment. In practical engineering, the dewatering effect of unconditioned sludge is very poor. The use of advanced oxidation technology can improve sludge dewatering performance, reduce sludge capacity, and remove micro-pollutants, which is beneficial for sludge post-treatment and disposal. Based on the current status of sludge conditioning and dehydration, the characteristics of the advanced oxidation method for sludge dehydration were systematically explained using various free radical reaction mechanisms and dehydration conditions. The effects of various advanced oxidation technologies on sludge conditioning and dewatering has been extensively discussed. Finally, the application prospects of the advanced oxidation technology in sludge conditioning and dewatering are presented

    Immunosuppressive mechanism of Hypoderma lineatum secreted serine esterase, a potential modulatory method used to inhibit transplant rejection

    No full text
    Background: Although immunosuppressive therapies have made organ transplantation a common medical procedure worldwide, chronic toxicity has a major issue for long-term treatment. One method to improve therapies and methods is the application of immunomodulatory agents from parasites such as Hypoderma lineatum. Hypodermin A (HA) is a serine esterase secreted by the larvae of Hypoderma lineatum, several studies demonstrated its immunosuppressive mechanism in vitro, and recently we discovered that HA inhibits the expression of interferon (IFN)-γ and interleukin (IL)-2 and activates IL-10 expression. Therefore, we hypothesized that it might be a potential agent used to block allograft rejections. However, most studies of the immunosuppressive mechanisms associated with HA were undertaken at the cellular level. In order to augment these studies, we evaluated the immunosuppressive effects of HA in vivo using an HA transgenic mouse model. Result: Our results revealed similar findings to those reported by in vitro studies, specifically that HA induced prostaglandin E2 expression, downregulated IFN-γ and IL-2 expression, and promoted IL-10 secretion via E-type prostanoid receptor 4. Additionally, we observed that HA overexpression inhibited lipopolysaccharide-induced TLR4 activation. These findings provide insight into a new potential agent capable of blocking graft rejection. Conclusion: Our founding suggested that HA-related treatment could be a promising option to improve the viability of grafts in human. Keywords: Cytokines, ELISA, Graft rejection, Host immune system, Hypodermin A, Immunomodulatory agents, Immunosuppression, Immunosuppressive, Interferon, Interleukin, Transplantatio
    corecore