5 research outputs found

    Identification of Co-Existing Mutations and Gene Expression Trends Associated With K13-Mediated Artemisinin Resistance in Plasmodium falciparum

    Get PDF
    Plasmodium falciparum infects millions and kills thousands of people annually the world over. With the emergence of artemisinin and/or multidrug resistant strains of the pathogen, it has become even more challenging to control and eliminate the disease. Multiomics studies of the parasite have started to provide a glimpse into the confounding genetics and mechanisms of artemisinin resistance and identified mutations in Kelch13 (K13) as a molecular marker of resistance. Over the years, thousands of genomes and transcriptomes of artemisinin-resistant/sensitive isolates have been documented, supplementing the search for new genes/pathways to target artemisinin-resistant isolates. This meta-analysis seeks to recap the genetic landscape and the transcriptional deregulation that demarcate artemisinin resistance in the field. To explore the genetic territory of artemisinin resistance, we use genomic single-nucleotide polymorphism (SNP) datasets from 2,517 isolates from 15 countries from the MalariaGEN Network (The Pf3K project, pilot data release 4, 2015) to dissect the prevalence, geographical distribution, and co-existing patterns of genetic markers associated with/enabling artemisinin resistance. We have identified several mutations which co-exist with the established markers of artemisinin resistance. Interestingly, K13-resistant parasites harbor α-ß hydrolase and putative HECT domain–containing protein genes with the maximum number of SNPs. We have also explored the multiple, publicly available transcriptomic datasets to identify genes from key biological pathways whose consistent deregulation may be contributing to the biology of resistant parasites. Surprisingly, glycolytic and pentose phosphate pathways were consistently downregulated in artemisinin-resistant parasites. Thus, this meta-analysis highlights the genetic and transcriptomic features of resistant parasites to propel further exploratory studies in the community to tackle artemisinin resistance.</p

    Genomic analysis of Indian isolates of Plasmodium falciparum: Implications for drug resistance and virulence factors

    No full text
    The emergence of drug resistance to frontline treatments such as Artemisinin-based combination therapy (ACT) is a major obstacle to the control and eradication of malaria. This problem is compounded by the inherent genetic variability of the parasites, as many established markers of resistance do not accurately predict the drug-resistant status. There have been reports of declining effectiveness of ACT in the West Bengal and Northeast regions of India, which have traditionally been areas of drug resistance emergence in the country. Monitoring the genetic makeup of a population can help to identify the potential for drug resistance markers associated with it and evaluate the effectiveness of interventions aimed at reducing the spread of malaria. In this study, we performed whole genome sequencing of 53 isolates of Plasmodium falciparum from West Bengal and compared their genetic makeup to isolates from Southeast Asia (SEA) and Africa. We found that the Indian isolates had a distinct genetic makeup compared to those from SEA and Africa, and were more similar to African isolates, with a high prevalence of mutations associated with antigenic variation genes. The Indian isolates also showed a high prevalence of markers of chloroquine resistance (mutations in Pfcrt) and multidrug resistance (mutations in Pfmdr1), but no known mutations associated with artemisinin resistance in the PfKelch13 gene. Interestingly, we observed a novel L152V mutation in PfKelch13 gene and other novel mutations in genes involved in ubiquitination and vesicular transport that have been reported to support artemisinin resistance in the early stages of ACT resistance in the absence of PfKelch13 polymorphisms. Thus, our study highlights the importance of region-specific genomic surveillance for artemisinin resistance and the need for continued monitoring of resistance to artemisinin and its partner drugs

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableEleven pigmented rice genotypes were evaluated to estimate genetic parameters, heritability and association. The results indicated that, genotypic variation was high among the lines. The distinct seasonal effect on plant performance for antioxidant capacity, anthocyanin, flavonoids, head rice recovery and test weights was also observed. Wet season favoured the crop performance in all genotypes as compared to drought conditions. The differential accumulation of different quality traits such as AOA, anthocyanin content, flavonoids content, etc showed high heritability, which would be transfer to high yeilding popular rice cultivars through conventional or geneticaly modification techniques. The line Mamihunger was chosen as donor of the high-quality rice grain and Annapurna for high yield. Further, Mamihunger are foreseen to be good in nutritional quality and industry use.Not Availabl

    An Epidemiological Analysis of SARS-CoV-2 Genomic Sequences from Different Regions of India

    No full text
    The number of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) cases is increasing in India. This study looks upon the geographic distribution of the virus clades and variants circulating in different parts of India between January and August 2020. The NPS/OPS from representative positive cases from different states and union territories in India were collected every month through the VRDLs in the country and analyzed using next-generation sequencing. Epidemiological analysis of the 689 SARS-CoV-2 clinical samples revealed GH and GR to be the predominant clades circulating in different states in India. The northern part of India largely reported the ‘GH’ clade, whereas the southern part reported the ‘GR’, with a few exceptions. These sequences also revealed the presence of single independent mutations—E484Q and N440K—from Maharashtra (first observed in March 2020) and Southern Indian States (first observed in May 2020), respectively. Furthermore, this study indicates that the SARS-CoV-2 variant (VOC, VUI, variant of high consequence and double mutant) was not observed during the early phase of virus transmission (January–August). This increased number of variations observed within a short timeframe across the globe suggests virus evolution, which can be a step towards enhanced host adaptation
    corecore