413 research outputs found

    Radiatively Generated νe\nu_e Oscillations: General Analysis, Textures and Models

    Get PDF
    We study the consequences of assuming that the mass scale Δodot\Delta_{odot} corresponding to the solar neutrino oscillations and mixing angle Ue3U_{e3} corresponding to the electron neutrino oscillation at CHOOZ are radiatively generated through the standard electroweak gauge interactions. All the leptonic mass matrices having zero Δodot\Delta_{odot} and Ue3U_{e3} at a high scale lead to a unique low energy value for the Δodot\Delta_{odot} which is determined by the (known) size of the radiative corrections, solar and the atmospheric mixing angle and the Majorana mass of the neutrino observed in neutrinoless double beta decay. This prediction leads to the following consequences: (ii) The MSSM radiative corrections generate only the dark side of the solar neutrino solutions. (iiii) The inverted mass hierarchy (m,m,0m,-m,0) at the high scale fails in generating the LMA solution but it can lead to the LOW or vacuum solutions. (iiiiii) The Δodot\Delta_{odot} generated in models with maximal solar mixing at a high scale is zero to the lowest order in the radiative parameter. It tends to get suppressed as a result of this and lies in the vacuum region. We discuss specific textures which can lead to the LMA solution in the present framework and provide a gauge theoretical realization of this in the context of the seesaw model.Comment: 19 pages, LATE

    Neutrino Anomalies in an Extended Zee Model

    Get PDF
    We discuss an extended SU(2)×U(1)SU(2)\times U(1) model which naturally leads to mass scales and mixing angles relevant for understanding both the solar and atmospheric neutrino anomalies. No right-handed neutrinos are introduced in the model.The model uses a softly broken LeLμLτL_e-L_{\mu}-L_{\tau} symmetry. Neutrino masses arise only at the loop level. The one-loop neutrino masses which arise as in the Zee model solve the atmospheric neutrino anomaly while breaking of LeLμLτL_e-L_{\mu}-L_{\tau} generates at two-loop order a mass splitting needed for the vacuum solution of the solar neutrino problem. A somewhat different model is possible which accommodates the large-angle MSW resolution of the solar neutrino problem.Comment: 11 pages including 2 figures; a reference added and text changed accordingl

    Floating Phase in 1D Transverse ANNNI Model

    Full text link
    To study the ground state of ANNNI chain under transverse field as a function of frustration parameter κ\kappa and field strength Γ\Gamma, we present here two different perturbative analyses. In one, we consider the (known) ground state at κ=0.5\kappa=0.5 and Γ=0\Gamma=0 as the unperturbed state and treat an increase of the field from 0 to Γ\Gamma coupled with an increase of κ\kappa from 0.5 to 0.5+rΓ0.5+r\Gamma as perturbation. The first order perturbation correction to eigenvalue can be calculated exactly and we could conclude that there are only two phase transition lines emanating from the point κ=0.5\kappa=0.5, Γ=0\Gamma=0. In the second perturbation scheme, we consider the number of domains of length 1 as the perturbation and obtain the zero-th order eigenfunction for the perturbed ground state. From the longitudinal spin-spin correlation, we conclude that floating phase exists for small values of transverse field over the entire region intermediate between the ferromagnetic phase and antiphase.Comment: 11 pages, 11 figure

    Algebraic approach in unifying quantum integrable models

    Full text link
    A novel algebra underlying integrable systems is shown to generate and unify a large class of quantum integrable models with given RR-matrix, through reductions of an ancestor Lax operator and its different realizations. Along with known discrete and field models a new class of inhomogeneous and impurity models are obtained.Comment: Revtex, 6 pages, no figure, revised version to be published in Phys. Rev. Lett., 199

    Optical investigation of thermoelectric topological crystalline insulator Pb0.77_{0.77}Sn0.23_{0.23}Se

    Full text link
    Pb0.77_{0.77}Sn0.23_{0.23}Se is a novel alloy of two promising thermoelectric materials PbSe and SnSe that exhibits a temperature dependent band inversion below 300 K. Recent work has shown that this band inversion also coincides with a trivial to nontrivial topological phase transition. To understand how the properties critical to thermoelectric efficiency are affected by the band inversion, we measured the broadband optical response of Pb0.77_{0.77}Sn0.23_{0.23}Se as a function of temperature. We find clear optical evidence of the band inversion at 160±15160\pm15 K, and use the extended Drude model to accurately determine a T3/2T^{3/2} dependence of the bulk carrier lifetime, associated with electron-acoustic phonon scattering. Due to the high bulk carrier doping level, no discriminating signatures of the topological surface states are found, although their presence cannot be excluded from our data.Comment: 11 pages, 6 figure

    Validation of Thermal Resistance Extracted From Measurements on Stripe Geometry SiGe HBTs

    Get PDF
    International audienceIn this article, we present a straightforward methodology to validate the consistency of thermal resistance (RTH) measurements for a set of stripe geometry silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The proposed approach is based on the behavior of frequency-dependent thermal impedance (ZTH) of HBTs. The key advantage of this method is its simplicity and ease of applicability because it requires no additional measurements than the conventional approaches to extract the electrothermal parameters. First, we provide a physics-based formulation to extract ZTH as a function of RTH. As a next step, we propose different normalization methods for ZTH in stripe emitter SiGe HBTs to validate the RTH used in our ZTH formulation. Finally, we substantiate our validation technique across stripe emitter SiGe HBTs having different emitter dimensions corresponding to STMicroelectronics B55 technology
    corecore