8 research outputs found

    Chemokine Receptor-5Δ32 Mutation is No Risk Factor for Ischemic-Type Biliary Lesion in Liver Transplantation

    Get PDF
    It has been shown that certain chemokine receptor polymorphisms may correspond to certain complications after organ transplantation. Ischemic-type biliary lesion (ITBL) encounters for major morbidity and mortality in liver transplant recipients. So far, the exact cause for ITBL remains unclear. Certain risk factors for the development of ITBL like donor age and cold ischemic time are well described. In a previous study, a 32-nucleotide deletion of the chemokine receptor-5Δ32 (CCR-5Δ32) was strongly associated with the incidence of ITBL in adult liver transplantation. This study re-evaluates the association of CCR-5Δ32 gene polymorphism and the incidence of ITBL. 169 patients were included into this retrospective analysis. 134 patients were homozygous for wild-type CCR-5, 33 patients heterozygous, and 2 patients were homozygous for CCR-5Δ32 mutation. There were no major differences in donor or recipients demographics. No association was found between CCR-5Δ32 mutation and the development of ITBL. We conclude that CCR-5Δ32 is no risk factor for the development of ITBL in our patient cohort

    Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organic cation transporters (OCT) are responsible for the uptake and intracellular inactivation of a broad spectrum of endogenous substrates and detoxification of xenobiotics and chemotherapeutics. The transporters became pharmaceutically interesting, because OCTs are determinants of the cytotoxicity of platin derivates and the transport activity has been shown to correlate with the sensitivity of tumors towards tyrosine kinase inhibitors. No data exist about the relevance of OCTs in hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>OCT1 (<it>SLC22A1</it>) and OCT3 (<it>SLC22A3</it>) mRNA expression was measured in primary human HCC and corresponding non neoplastic tumor surrounding tissue (TST) by real time PCR (n = 53). Protein expression was determined by western blot analysis and immunofluorescence. Data were correlated with the clinicopathological parameters of HCCs.</p> <p>Results</p> <p>Real time PCR showed a downregulation of <it>SLC22A1 </it>and <it>SLC22A3 </it>in HCC compared to TST (p ≤ 0.001). A low <it>SLC22A1 </it>expression was associated with a worse patient survival (p < 0.05). Downregulation was significantly associated with advanced HCC stages, indicated by a higher number of T3 tumors (p = 0.025) with a larger tumor diameter (p = 0.035), a worse differentiation (p = 0.001) and higher AFP-levels (p = 0.019). In accordance, <it>SLC22A1 </it>was less frequently downregulated in tumors with lower stages who underwent transarterial chemoembolization (p < 0.001) and liver transplantation (p = 0.001). Tumors with a low <it>SLC22A1 </it>expression (< median) showed a higher <it>SLC22A3 </it>expression compared to HCC with high <it>SLC22A1 </it>expression (p < 0.001). However, there was no significant difference in tumor characteristics according to the level of the <it>SLC22A3 </it>expression.</p> <p>In the western blot analysis we found a different protein expression pattern in tumor samples with a more diffuse staining in the immunofluorescence suggesting that especially OCT1 is not functional in advanced HCC.</p> <p>Conclusion</p> <p>The downregulation of OCT1 is associated with tumor progression and a worse patient survival.</p

    Six-Month Follow-Up after Vaccination with BNT162b2: SARS-CoV-2 Antigen-Specific Cellular and Humoral Immune Responses in Hemodialysis Patients and Kidney Transplant Recipients

    No full text
    Hemodialysis patients (HDP) and kidney transplant recipients (KTR) have a high risk of infection with SARS-CoV-2 with poor clinical outcomes. Because of this, vaccination of these groups of patients against SARS-CoV-2 is particularly important. However, immune responses may be impaired in immunosuppressed and chronically ill patients. Here, our aim was to compare the efficacy of an mRNA-based vaccine in HDP, KTR, and healthy subjects. Design: In this prospective observational cohort study, the humoral and cellular response of prevalent 192 HDP, 50 KTR, and 28 healthy controls (HC) was assessed 1, 2, and 6 months after the first immunization with the BNT162b2 mRNA vaccine. Results: After 6 months, 97.5% of HDP, 37.9% of KTR, and 100% of HC had an antibody response. Median antibody levels were 1539.7 (&plusmn;3355.8), 178.5 (&plusmn;369.5), and 2657.8 (&plusmn;2965.8) AU/mL in HDP, KTR, and HC, respectively (p &le; 0.05). A SARS-CoV-2 antigen-specific cell response to vaccination was found in 68.8% of HDP, 64.5% of KTR, and 90% of HC. Conclusion: The humoral response rates to mRNA-based vaccination of HDPs are comparable to HCs, but antibody titers are lower. Furthermore, HDPs have weaker T-cell response to vaccination than HCs. KTRs have very low humoral and antigen-specific cellular response rates and antibody titers, which requires other vaccination strategies in addition to booster vaccination

    Genomic Perturbations Reveal Distinct Regulatory Networks in Intrahepatic Cholangiocarcinoma

    Get PDF
    Intrahepatic cholangiocarcinoma (iCCA) remains a highly heterogeneous malignancy that has eluded effective patient stratification to date. The extent to which such heterogeneity can be influenced by individual driver mutations remains to be evaluated. Here, we analyzed genomic (whole-exome sequencing, targeted exome sequencing) and epigenomic data from 496 patients, and used the three most recurrently mutated genes to stratify patients (IDH, KRAS, TP53, 'undetermined'). Using this molecular dissection approach, each subgroup was determined to possess unique mutational signature preferences, co-mutation profiles and enriched pathways. High-throughput drug repositioning in seven patient-matched cell lines, chosen to reflect the genetic alterations specific for each patient group, confirmed in silico predictions of subgroup-specific vulnerabilities linked to enriched pathways. Intriguingly, patients lacking all 3 mutations ('undetermined') harbored the most extensive structural alterations while IDH mutant tumors displayed the most extensive DNA methylome dysregulation, consistent with previous findings.Stratification of iCCA patients based on occurrence of mutations in three classifier genes (IDH, KRAS, TP53) revealed unique oncogenic programs (mutational, structural, epi-mutational) that influence pharmacologic response in drug repositioning protocols. This genome dissection approach highlights the potential of individual mutations to induce extensive molecular heterogeneity and could facilitate advancement of therapeutic response in this dismal disease. This article is protected by copyright. All rights reserved

    Loss of organic cation transporter 3 (Oct3) leads to enhanced proliferation and hepatocarcinogenesis

    No full text
    Background: Organic cation transporters (OCT) are responsible for the uptake of a broad spectrum of endogenous and exogenous substrates. Downregulation of OCT is frequently observed in human hepatocellular carcinoma (HCC) and is associated with a poor outcome. The aim of our current study was to elucidate the impact of OCT3 on hepatocarcinogenesis. Methods: Transcriptional and functional loss of OCT was investigated in primary murine hepatocytes, derived from Oct3-knockout (Oct3(-/-); FVB. Slc22a3(tm1Dpb)) and wildtype (WT) mice. Liver tumors were induced in Oct3(-/-) and WT mice with Diethylnitrosamine and Phenobarbital over 10 months and characterized macroscopically and microscopically. Key survival pathways were investigated by Western Blot analysis. Results: Loss of Oct3(-/-) in primary hepatocytes resulted in significantly reduced OCT activity determined by [H-3] MPP+ uptake in vivo. Furthermore, tumor size and quantity were markedly enhanced in Oct3(-/-) mice (p<0.0001). Oct3(-/-) tumors showed significant higher proliferation (p<0.0001). Ki-67 and Cyclin D expression were significantly increased in primary Oct3(-/-) hepatocytes after treatment with the OCT inhibitors quinine or verapamil (p<0.05). Functional inhibition of OCT by quinine resulted in an activation of c-Jun N-terminal kinase (Jnk), especially in Oct3(-/-) hepatocytes. Conclusion: Loss of Oct3 leads to enhanced proliferation and hepatocarcinogenesis in vivo
    corecore