19 research outputs found
P450-mediated dehydrotyrosine formation during WS9326 biosynthesis proceeds via dehydrogenation of a specific acylated dipeptide substrate
WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,β-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1′-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1′-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides
Recommended from our members
Minimum Information about a Biosynthetic Gene cluster
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.Chemistry and Chemical Biolog
Chemical probes reveal the timing of early chlorination in vancomycin biosynthesis
Glycopeptides such as vancomycin are antibiotics of last resort whose biosynthetic pathways still hold undefined details. Chemical probes were used to capture biosynthetic intermediates generated in the nonribosomal peptide formation of vancomycin in vivo. The putative intercepted intermediates were characterised via HR-LC-MS2. These species provided insights into the timing of the first chlorination of the peptide backbone by the halogenase VhaA: this holds significant interest for enzyme engineering towards the making of novel glycopeptides
The Draft Genome Sequence of Actinokineospora bangkokensis 44EHWT Reveals the Biosynthetic Pathway of the Antifungal Thailandin Compounds with Unusual Butylmalonyl-CoA Extender Units
We report the draft genome sequence of Actinokineospora bangkokensis 44EHWT, the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There are three gene clusters encoding large polyketide synthases of type I. Annotation of the ORF functions and targeted gene disruption enabled us to identify the cluster for thailandin biosynthesis. We propose a plausible biosynthetic pathway for thailandin, where the unusual butylmalonyl-CoA extender unit is incorporated and results in an untypical side chain
Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism
Covering: 2000 up to 2018The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways
A route to diastereomerically pure phenylglycine thioester peptides:Crucial intermediates for investigating glycopeptide antibiotic biosynthesis
Non-ribosomal peptides contain an array of amino acid building blocks that can present challenges for the synthesis of important intermediates. Here we report a route to incorporate phenylglycine residues in peptide thioesters without significant racemisation.</p
Thailandins A and B, New Polyene Macrolactone Compounds Isolated from Actinokineospora bangkokensis Strain 44EHW<sup>T</sup>, Possessing Antifungal Activity against Anthracnose Fungi and Pathogenic Yeasts
Two
new polyene macrolactone antibiotics, thailandins A, <b>1</b>, and B, <b>2</b>, were isolated from the fermentation
broth of rhizosphere soil-associated Actinokineospora
bangkokensis strain 44EHW<sup>T</sup>. The new compounds
from this strain were purified using semipreparative HPLC and Sephadex
LH-20 gel filtration while following an antifungal activity guided
fractionation. Their structures were elucidated through spectroscopic
techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated
broad spectrum antifungal activity against fungi causing anthracnose
disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida
albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between
16 and 32 μg/mL. This is the first report of polyene antibiotics
produced by Actinokineospora species
as bioactive compounds against anthracnose fungi and pathogenic yeast
strains
Enzymatic cascade to evaluate the tricyclization of glycopeptide antibiotic precursor peptides as a prequel to biosynthetic redesign
Natural products are the greatest source of antimicrobial agents, although their structural complexity often renders synthetic production and diversification of key classes impractical. One pertinent example is the glycopeptide antibiotics (GPAs), which are highly challenging to synthesize due to their heavily cross-linked structures. Here, we report an optimized method that generates >75% tricyclic peptides from synthetic precursors in order to explore the acceptance of novel GPA precursor peptides by these key existent biosynthetic enzymes