13 research outputs found

    Impact of Carbon Foam Cell Sizes on the Microstructure and Properties of Pressure Infiltrated Magnesium Matrix Composites

    No full text
    Magnesium-based composites reinforced with open-celled carbon foams (Cof) of porosity approx. 97 vol % and three cell sizes (20, 45 and 100 ppi) were examined to characterize the influence of foam cell size on the microstructure and properties when pure magnesium and two cast alloys AZ31 and RZ5 were used as matrices. All composites were fabricated by pressure infiltration under the same conditions (temperature, pressure, time). For each matrix composition, two main factors due to the presence of the foam determined the composite microstructure—the efficiency of foam penetration and different conditions of metal crystallization. The lowest porosity was obtained when Cof45ppi was used and was independent of the applied matrix composition. The metallic component microhardness increased with a decrease in the carbon cell size as well as a decrease in the α-Mg grain size; both of those results should be taken into account during theoretical calculations. Compression and three-point bending strength measurements showed increases as the carbon cell size decreased, but reinforcing effectiveness relative to the matrix material depended on the metal matrix composition. At the fractured surface, different structural effects in the foam and matrix as well as at the interface were observed and depended on the foam geometry, metal composition and mechanical test type. In glassy carbon foam, those effects occurred as cracking across walls, fragmentation, and delamination, while in the matrix, shear bands and intergranular cracking were observed. On the delaminated foam surface, the microareas of a thin oxide layer were detected as well as dispersed phases characteristic for the applied matrix alloys. The accumulation of intermetallic phases was also observed on the metal matrix surface in microareas delaminated from the carbon foams. Mechanical property results indicated that among the tested, open-celled, carbon foams a 45 ppi porosity was the most useful for pressure infiltration and independent of magnesium-based matrix composition

    Magnesium Matrix Composite with Open-Celled Glassy Carbon Foam Obtained Using the Infiltration Method

    No full text
    In this study, we present a new composite material that was developed using the pressure infiltration method. In this composite, carbon reinforcement in the form of an open-celled rectangular foam (Cof) was applied, and pure magnesium with two commercial magnesium cast alloys (AZ31, RZ5) was used as the matrix. We examined the microstructure (LM, SEM + EDS) of composites as well as the density, porosity, hardness, compressive strength, flexural strength and tribological properties in dry conditions. It was revealed that the chemical composition of the matrix had a significant impact on the macrostructure, microstructure and properties of the composite. The matrix with rare elements (RZ5) induced poor infiltration of Cof and physicochemical degradation of the reinforcement, while pure magnesium ensured good infiltration, a stable friction coefficient and low wear. For the AZ31 alloy, the effects of infiltration were good; however, an increase in the tribological properties was not observed. Compared with the as-cast matrix materials, the presence of carbon foam in both pure Mg and AZ31 alloy induced an increase in compressive strength and stiffness as well as a decrease in flexural strength. Furthermore, SEM examination of the fractured and wear surfaces microstructure showed structural effects’ dependence on the matrix composition

    Impact of the Morphology of Micro- and Nanosized Powder Mixtures on the Microstructure of Mg-Mg2Si-CNT Composite Sinters

    No full text
    The problem of preparing a ternary powder mixture, which was meant to fabricate sintered heterophase composite, and consisted of micro- and two nanosized powders, was analyzed. The microsized powder was a pure magnesium, and as nanocomponents, a silicon powder (nSi) and carbon nanotubes (CNTs) with 2% and 1% volume fractions, respectively, were applied. The powder mixtures were prepared using ultrasonic and mechanical mixing in technological fluid, and four mixing variants were applied. The morphology of the powder mixtures was characterized with scanning electron microscopy (SEM), and then, composite sinters were fabricated in a vacuum with hot temperature pressing at 580 °C under 15 MPa pressure, using a Degussa press. The reaction between the nSi and the Mg matrix, which caused the creation of the Mg2Si phase in the fabricated Mg-Mg2Si-CNT composite, was confirmed with X-ray diffraction (XRD). The porosity and hardness of the composite sinters were examined, and optical microscopy (OM) and quantitative image analyses were carried out to characterize the microstructure of the composites. In the manufacturing process of the Mg-nSi-CNT mixtures, the best results were the following: first separate de-agglomeration of nanocomponents, then their common mixing, and finally, the deposition of nanocomponents at the surface of the microsized magnesium powder. The applied procedure ensured the uniform layer formation of de-agglomerated nanocomponents on the Mg powder, without re-agglomerated nSi and CNTs. Moreover, this type of powder mixture morphology allows to obtain sinters with lower porosity and higher hardness, which is accompanied by precipitation of a finer Mg2Si phase. In the Mg-Mg2Si-CNT composite, the carbon phase was present, and it was located in the magnesium matrix and in silicide

    Effect of Magnesium Matrix Grain Refinement Induced by Plastic Deformation in a Composite with Short Carbon Fibers

    No full text
    The magnesium matrix composite reinforced with 3 vol. % of short carbon fibers (Csf), fabricated, under industrial conditions, by the stir casting method, was applied to obtain composite bars by two extrusion methods: the novel method of cold severe plastic deformation with a forward-backward rotating die (KoBo) and conventional extrusion at 400 °C. The effect of Mg(α) grain refining, as well as fibers behavior and phenomenon at the fiber-matrix interface, was examined by optical microscopy, scanning electron microscopy with energy dispersive spectroscopy and scanning-transmission electron microscopy methods. The Mg(α) grain quantitative characteristics revealed a decrease of the equivalent diameter from 219 ± 76 μm (as-cast) to 24 ± 10 μm and 0.89 ± 0.35 μm (the hot-extruded and KoBo-processed, respectively). In addition, due to the KoBo application, except for the Csf orientation that was parallel to the extrusion direction, an effect of fibers fragmentation on the length of few Csf diameters was detected. No significant changes in the Csf-matrix interface (besides those between new carbon surfaces) formed by fibers fragmentation, and the matrix created by extrusion were detected. A comparison of the mechanical properties of the Mg-Csf composite showed that the KoBo method ensured a spectacular increase in strength and plasticity

    Application of Nanosilicon to the Sintering of Mg-Mg2Si Interpenetrating Phases Composite

    No full text
    The new in situ fabrication process for Mg-Mg2Si composites composed of interpenetrating metal/intermetallic phases via powder metallurgy was characterized. To obtain the designed composite microstructure, variable nanosilicon ((n)Si) (i.e., 2, 4, and 6 vol.% (n)Si) concentrations were mixed with magnesium powders. The mixture was ordered using a sonic method. The powder mixture morphologies were characterized using scanning electron microscopy (SEM), and heating and cooling-induced thermal effects were characterized using differential scanning calorimetry (DSC). Composite sinters were fabricated by hot-pressing the powders under a vacuum of 2.8 Pa. Shifts in the sintering temperature resulted in two observable microstructures: (1) the presence of Mg2Si and MgO intermetallic phases in α-Mg (580 °C); and (2) Mg2Si intermetallic phases in the α-Mg matrix enriched with bands of refined MgO (640 °C). Materials were characterized by light microscopy (LM) with quantitative metallography, X-ray diffraction (XRD), open porosity measurements, hardness testing, microhardness testing, and nanoindentation. The results revealed that (n)Si in applied sintering conditions ensured the formation of globular and very fine Mg2Si particles. The particles bonded with each other to form an intermetallic network. The volume fraction of this network increased with (n)Si concentration but was dependent on sintering temperature. Increasing sintering temperature intensified magnesium vaporization, affecting the composite formation mechanism and increasing the volume fraction of silicide

    Magnesium Matrix Composite with Open-Celled Glassy Carbon Foam Obtained Using the Infiltration Method

    No full text
    In this study, we present a new composite material that was developed using the pressure infiltration method. In this composite, carbon reinforcement in the form of an open-celled rectangular foam (Cof) was applied, and pure magnesium with two commercial magnesium cast alloys (AZ31, RZ5) was used as the matrix. We examined the microstructure (LM, SEM + EDS) of composites as well as the density, porosity, hardness, compressive strength, flexural strength and tribological properties in dry conditions. It was revealed that the chemical composition of the matrix had a significant impact on the macrostructure, microstructure and properties of the composite. The matrix with rare elements (RZ5) induced poor infiltration of Cof and physicochemical degradation of the reinforcement, while pure magnesium ensured good infiltration, a stable friction coefficient and low wear. For the AZ31 alloy, the effects of infiltration were good; however, an increase in the tribological properties was not observed. Compared with the as-cast matrix materials, the presence of carbon foam in both pure Mg and AZ31 alloy induced an increase in compressive strength and stiffness as well as a decrease in flexural strength. Furthermore, SEM examination of the fractured and wear surfaces microstructure showed structural effects’ dependence on the matrix composition

    Effect of Magnesium Powder Application on the Microstructure and Properties of Rods Extruded by the Forward-Backward Rotating Die Extrusion Method

    No full text
    The effects of severe plastic deformation (SPD) with a forward-backward rotating die (KOBO extrusion) on pure magnesium, in the form of cold-compacted powder, sintered powder, or cast ingots as reference, were examined. This method is known to reinforce metals, but the role of the initial form of magnesium applied in the fabrication of metal-based rods, as well as related phenomena, has not been characterized until now. The problem is important in the potential processing of commercial metal powders, the recycling of metal shavings, and the fabrication of metal matrix composites with discontinuous reinforcing phases. In the presented experiments, rods of 8 mm in diameter and 400 mm in length were obtained, and the structural effects induced by KOBO that occurred on a macro- and microscale on the surface and cross sections were characterized. Changes in the size and orientation of α-Mg crystallites were determined by XRD. The porosity, hardness, tensile strength, and compressive strength were measured, and the mechanisms of decohesion dependent on starting metal form were analyzed. After KOBO extrusion, significant differences were observed in the microstructure and properties between the materials derived from cold-compacted powder, sintered powder, and reference cast magnesium. Due to the application of KOBO, apart from α-Mg grain refinement, the MgO derived from the initial powder’s surface was refined to fine regular particles surrounded by magnesium. Their bands curved in the perpendicular plane and were oriented with the extrusion direction of the formed network, which augmented some mechanical properties and changed the decohesion mechanism. The conducted experiments revealed that before extrusion by KOBO, the magnesium powder required sintering under pressure
    corecore