9 research outputs found

    A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    Get PDF
    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX\uae) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12\u201316 weeks, and bone regeneration was evaluated by radiography, computed microtomography (\ub5CT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORETEX\uae) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitut

    Platelet-rich plasma-based bioactive membrane as a new advanced wound care tool

    No full text
    Chronic skin ulcers, consequence of diabetes and other pathological conditions, heavily compromise the patient life quality and represent a high and constantly growing cost for National Health Services. Autologous platelet-rich plasma (PRP), has been proposed to treat these lesions. The absence of guidelines for the PRP production and the need of a fresh preparation for each treatment lead us to develop a protocol for the production of an allogenic PRP-based bioactive membrane (BAM), standardized for platelet concentration and growth factor release. This work compares BAMs obtained starting from two different platelet concentrations. There was no direct correlation between the amount of growth factors released by BAM in vitro and the initial platelet count. However, different release kinetics were noticed for different growth factors, suggesting that they were differently retained by the two BAMs. The angiogenic potential of both BAMs was determined by Luminex Angiogenesis Assay. The biological activity of the factors released by the two BAMs was confirmed by cell proliferation and migration. A diabetic mouse chronic ulcer model was used to define the best PRP therapeutic dose in vivo. Both BAMs induced wound healing by increasing the thickness of the regenerated epidermis and the vessel number. However, a too high platelet concentration resulted in a slowdown of the membrane resorption that interfered with the skin healing. Overall, the results indicate that the BAMs could represent a natural and effective wound healing tool for the treatment of skin ulcers. Copyright \uc2\ua9 2016 John Wiley & Sons, Ltd

    Combined platelet and plasma derivatives enhance proliferation of stem/progenitor cells maintaining their differentiation potential

    No full text
    Background aims: Platelet derivatives have been proposed as alternatives to animal sera given that for cell therapy applications, the use of fetal bovine/calf serum (FBS/FCS) is subjected to severe limitations for safety and ethical concerns. We developed a cell culture medium additive obtained by the combination of two blood-derived standardized components. Methods: A platelet lysate (PL) and a platelet-poor plasma (PPP) were produced in a lyophilized form. Each component was characterized for its growth factor content (platelet-derived growth factor-BB/vascular endothelial growth factor). PL and PPP were used as single components or in combination in different ratio at cumulative 5% final concentration in the culture medium. Results: The single components were less effective than the component combination. In primary cell cultures (bone marrow stromal cells, adipose derived adult stem cells, osteoblasts, chondrocytes, umbilical cord-derived mesenchymal stromal cells, lymphocytes), the PL/PPP supplement promoted an increased cell proliferation in respect to the standard FCS culture in a dose-dependent manner, maintaining the cell functionality, clonogenicity, phenotype and differentiative properties throughout the culture. At a different component ratio, the supplement was also used to support proliferation of a cell line (U-937). Conclusions: The PL/PPP supplement is an efficient cell culture medium additive that can replace FCS to promote cell proliferation. It can outdo FCS, especially when adopted in primary cultures from tissue biopsies. Moreover, the dual component nature of the supplement allows the researcher to determine the more appropriate ratio of the two components for the nutritional and functional requirements of the cell type of interest

    Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    Get PDF
    Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i) an heparin-free human platelet lysate (PL) devoid of serum or plasma components (v-PL) and (ii) an heparin-free human serum derived from plasma devoid of PL components (Pl-s) and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC) primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment), but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79) regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype
    corecore