12 research outputs found

    HAZE REMOVAL IN THE VISIBLE BANDS OF LANDSAT 8 OLI OVER SHALLOW WATER AREA

    Get PDF
    Haze is one of radiometric quality parameters in remote sensing imagery. With certain atmospheric correction, haze is possible to be removed. Nevertheless, an efficient method for haze removal is still a challenge. Many methods have been developed to remove or to minimize the haze disruption. While most of the developed methods deal with removing haze over land areas, this paper tried to focus to remove haze from shallow water areas. The method presented in this paper is a simple subtraction algorithm between a band that reflected by water and a band that absorbed by water. This paper used data from Landsat 8 with visible bands as a band that reflected by water while the band that absorbed by water represented by NIR, SWIR-1, and SWIR-2 bands. To validate the method, a reference data which relatively clear of cloud and haze contamination is selected. The pixel numbers from certain points are selected and collected from data scene, results scene and reference scene. Those pixel numbers, then being compared each other to get a correlation number between data scene to reference scene and between result scene and reference scene. The comparison shows that the method using NIR, SWIR-1, and SWIR-2 all significantly improved correlations numbers between result scene with reference scene to higher than 0.9. The comparison also indicates that haze removal result using NIR band had the highest correlation with reference data.

    CLOUD IDENTIFICATION FROM MULTITEMPORAL LANDSAT-8 USING K-MEANS CLUSTERING

    Get PDF
    In the processing and analysis of remote-sensing data, cloud that interferes with earth-surface data is still a challenge. Many methods have already been developed to identify cloud, and these can be classified into two categories: single-date and multi-date identification. Most of these methods also utilize the thresholding method which itself can be divided into two categories: local thresholding and global thresholding. Local thresholding works locally and is different for each pixel, while global thresholding works similarly for every pixel. To determine the global threshold, two approaches are commonly used: fixed value as threshold and adapted threshold. In this paper, we propose a cloud-identification method with an adapted threshold using K-means clustering. Each related multitemporal pixel is processed using K-means clustering to find the threshold. The threshold is then used to distinguish clouds from non-clouds. By using the L8 Biome cloud-cover assessment as a reference, the proposed method results in Kappa coefficient of above 0.9. Furthermore, the proposed method has lower levels of false negatives and omission errors than the FMask method

    IDENTIFIKASI AWAN PADA DATA TIME SERIES MULTITEMPORAL MENGGUNAKAN PERBANDINGAN DATA SEKUENSIAL

    Get PDF
    Identifikasi awan merupakan langkah penting dalam pengolahan data citra penginderaan jauh. Secara umum, odentifikasi awan dapat diklasifikasikan dalam dua metode, yaitu single-date dan multi-date. Metode single-date kemudian dapat dibagi menjadi dua kategori, yaitu metode yang berdasarkan ciri-ciri fisik dan metode yang berdasarkan pembelajaran mesin. Sementara metode multi-date pada umumnya menggunakan data yang bebas awan sebagai referensi. Data bebas awan tersebut bisa merupakan satu scene secara keseluruhan maupun dibangun dari beberapa scene. Dalam makalah ini, dibahas metode multi-date untuk identifikasi awan dengan menggunakan data time series. Suatu nilai piksel dari suatu scene yang diperiksa dibandingkan dengan nilai piksel dari scene yang berbeda pada lokasi yang sama. Scene yang berbeda yang dimaksud adalah data yang diakuisisi sebelum dan sesudah data yang diperiksa. Perbedaan nilai piksel dari data yang diperiksa dan data yang diakuisisi sebelum dan setelahnya itu kemudian dievaluasi menggunakan thresholds untuk mengkategorikan piksel tersebut sebagai awan atau non awan. Assessment dilakukan dengan menggunakan L8 Biome sebagai referensi. Hasil dari assessment menunjukkan metode yang diusulkan memiliki koefisien Kappa lebih besar dari 0.9

    THE EFFECT OF JPEG2000 COMPRESSION ON REMOTE SENSING DATA OF DIFFERENT SPATIAL RESOLUTIONS

    Get PDF
    The huge size of remote sensing data implies the information technology infrastructure to store, manage, deliver and process the data itself. To compensate these disadvantages, compressing technique is a possible solution. JPEG2000 compression provide lossless and lossy compression with scalability for lossy compression. As the ratio of lossy compression getshigher, the size of the file reduced but the information loss increased. This paper tries to investigate the JPEG2000 compression effect on remote sensing data of different spatial resolution. Three set of data (Landsat 8, SPOT 6 and Pleiades) processed with five different level of JPEG2000 compression. Each set of data then cropped at a certain area and analyzed using unsupervised classification. To estimate the accuracy, this paper utilized the Mean Square Error (MSE) and the Kappa coefficient agreement. The study shows that compressed scenes using lossless compression have no difference with uncompressed scenes. Furthermore, compressed scenes using lossy compression with the compression ratioless than 1:10 have no significant difference with uncompressed data with Kappa coefficient higher than 0.8

    Pengembangan Nilai Kualitas Radiometrik untuk Citra Landsat-8 (Fase I: Identifikasi Kabut)

    No full text
    Kualitas radiometrik citra menunjukkan seberapa baik citra tersebut bebas dari pengaruh kesalahanradiometrik, setidaknya ada 2 parameter yang dapat diperoleh dari data Landsat-8 dan digunakan untuk menilai kualitasradiometrik, yaitu adanya kabut (haze) dan adanya awan atau jarak dari awan. Sebagai langkah awal daripengembangan kualitas radiometrik citra, penelitian ini mengembangkan teknik untuk mengidentifikasi haze dari dataLandsat-8. Data yang digunakan adalah data Landsat-8 yang sudah terkoreksi geometrik ortho kemudian dilakukankoreksi radiometrik TOA (Top Of Atmosferic) dan BRDF (Biderectional Reflectance Distribution Function). Analisayang digunakan adalah membandingkan teknik tasseled cap haze transformation, simplified tasseled cap hazetransformation, haze optimized transform, dan algoritma pengembangan dengan teknik supervised haze transformation.Algoritma yang dikembangkan menggunakan histogram 2 dimensi (scaterplot 2D) dari kanal kanal biru dan merah,analisa dilakukan berdasarkan data contoh (sample) reflektansi vegetasi dan lahan terbuka dari tiga kelas haze (tanpahaze, sedikit haze, dan banyak haze). Dengan menggunakan analisa visual, dipilih algoritma terbaik dalam mendeteksihaze yaitu supervised haze transformation.Hlm. 124-13

    Haze Removal In The Visible Bands Of Landsat 8 Oli Over Shallow Water Area

    No full text
    Haze is one of radiometric quality parameters in remote sensing imagery. With certain atmospheric correction, haze is possible to be removed. Nevertheless, an efficient method for haze removal is still a challenge. Many methods have been developed to remove or to minimize the haze disruption. While most of the developed methods deal with removing haze over land areas, this paper tried to focus to remove haze from shallow water areas. The method presented in this paper is a simple subtraction algorithm between a band that reflected by water and a band that absorbed by water. This paper used data from Landsat 8 with visible bands as a band that reflected by water while the band that absorbed by water represented by NIR, SWIR-1, and SWIR-2 bands. To validate the method, a reference data which relatively clear of cloud and haze contamination is selected. The pixel numbers from certain points are selected and collected from data scene, results scene and reference scene. Those pixel numbers, then being compared each other to get a correlation number between data scene to reference scene and between result scene and reference scene. The comparison shows that the method using NIR, SWIR-1, and SWIR-2 all significantly improved correlations numbers between result scene with reference scene to higher than 0.9. The comparison also indicates that haze removal result using NIR band had the highest correlation with reference data.p. 151-157 : ilus. ; 28 c

    Pengembangan Nilai Kualitas Radiometrik untuk Citra Landsat-8 (Fase I: Identifikasi Kabut) = Development of Landsat-8 Image Radiometric Quality Score (Phase I: Haze Identification)

    No full text
    Kualitas radiometrik citra menunjukkan seberapa baik citra tersebut bebas dari pengaruh kesalahan radiometrik, setidaknya ada 2 parameter yang dapat diperoleh dari data Landsat-8 dan digunakan untuk menilai kualitas radiometrik, yaitu adanya kabut (haze) dan adanya awan atau jarak dari awan. Sebagai langkah awal dari pengembangan kualitas radiometrik citra, penelitian ini mengembangkan teknik untuk mengidentifikasi haze dari dataLandsat-8. Data yang digunakan adalah data Landsat-8 yang sudah terkoreksi geometrik ortho kemudian dilakukan koreksi radiometrik TOA (Top Of Atmosferic) dan BRDF (Biderectional Reflectance Distribution Function). Analisa yang digunakan adalah membandingkan teknik tasseled cap haze transformation, simplified tasseled cap haze transformation, haze optimized transform, dan algoritma pengembangan dengan teknik supervised haze transformation. Algoritma yang dikembangkan menggunakan histogram 2 dimensi (scaterplot 2D) dari kanal kanal birudan merah, analisa dilakukan berdasarkan data contoh (sample) reflektansi vegetasi dan lahan terbuka dari tiga kelas haze (tanpa haze, sedikit haze, dan banyak haze). Dengan menggunakan analisa visual, dipilih algoritma terbaik dalam mendeteksi haze yaitu supervised haze transformation.Image radiometric quality score is the score that shows how good the image from radiometric error. At least there are two parameters derived from Landsat-8 image that can be used to assess the radiometric quality, that are haze and cloud or cloud distance. As an initial work of the image radiometric quality score development, this research developed the haze identification technique from Landsat-8 image. This research used the Landsat-8 ortho rectified image, then radiometric correction (Top Of Atmospheric and Bidirectional Reflectance Distribution Function) was applied. We analyzed tasseled cap haze transformation, simplified tasseled cap haze transformation, hazeoptimized transform, and supervised haze transformation. The development of supervised haze transformation algorithms used the 2 dimensions (2D) histogram (scaterplot) between blue and red band. Analysis was carried out based on the sample reflectance of vegetation and bare soil in the three classes of haze (no haze, less haze, and much haze). By using the visual investigation, the best result in the haze detection was supervised haze transformationHlm. 124-13

    THE EFFECT OF JPEG2000 COMPRESSION ON REMOTE SENSING DATA OF DIFFERENT SPATIAL RESOLUTIONS

    Get PDF
    The huge size of remote sensing data implies the information technology infrastructure to store, manage, deliver and process the data itself. To compensate these disadvantages, compressing technique is a possible solution. JPEG2000 compression provide lossless and lossy compression with scalability for lossy compression. As the ratio of lossy compression getshigher, the size of the file reduced but the information loss increased. This paper tries to investigate the JPEG2000 compression effect on remote sensing data of different spatial resolution. Three set of data (Landsat 8, SPOT 6 and Pleiades) processed with five different level of JPEG2000 compression. Each set of data then cropped at a certain area and analyzed using unsupervised classification. To estimate the accuracy, this paper utilized the Mean Square Error (MSE) and the Kappa coefficient agreement. The study shows that compressed scenes using lossless compression have no difference with uncompressed scenes. Furthermore, compressed scenes using lossy compression with the compression ratioless than 1:10 have no significant difference with uncompressed data with Kappa coefficient higher than 0.8.Hlm. 111-11

    Percepatan Proses Publikasi Data di Katalog Bank Data Penginderaan Jauh Nasional (BDPJN) dengan Parallel Programming

    No full text
    Sistem Katalog Bank Data Penginderaan Jauh Nasional (BDPJN) adalah suatu sistem yang dibangununtuk memenuhi tugas Lembaga Penerbangan dan Antariksa Nasional (LAPAN) dalam hal pendistribusian data citra.Sistem tersebut mencakup proses produksi data citra penginderaan jauh hingga bisa dimunculkan dalam tampilankatalog BDPJN. Saat ini Pusat Teknologi dan Data Penginderaan Jauh (Pustekdata) LAPAN memiliki target agar setiapdata citra penginderaan jauh yang telah berhasil diakuisisi oleh LAPAN dapat terpublikasikan dalam sistem katalogBDPJN dalam jangka waktu dua hari. Pada sistem yang telah dibangun, proses produksi data citra yaitu proses prepareberlangsung secara serial. Untuk jenis data tertentu, proses prepare yang berjalan secara serial tersebut memakan waktuyang cukup lama hingga tidak bisa memenuhi target publikasi dua hari setelah waktu akuisisi. Tulisan ini mencobamengkaji proses prepare dalam sistem katalog BDPJN dengan mengubah proses yang sebelumnya berjalan secara serialmenjadi paralel dengan tujuan memenuhi target publikasi dua hari setelah waktu akuisisi. Pada tulisan ini digunakandata SPOT 6 Pankromatik sebagai data percobaan. Hasil percobaan menunjukkan bahwa secara umum penggunaanparallel programming mampu mempercepat pengolahan dalam proses prepare. Namun demikian masih terdapat hal-halyang perlu diperhatikan dan dapat ditingkatkan untuk semakin meningkatkan performansi dari proses produksi sistemkatalog BDPJN ini.Hal.199-20

    Koreksi Atmosferik Untuk Daerah Perairan Menggunakan Band Cirrus Pada Data Landsat-8

    No full text
    Kondisi atmosfer termasuk keberadaan awan sirus sangat berpengaruh pada kualitas radiometrik citra penginderaan jauh. Data Landsat-8 memiliki band yang khusus mendeteksi awan sirus, yaitu band 9. Penelitian ini bertujuan untuk mengembangkan metode koreksi atmosferik dengan menggunakan band 9 pada data Landsat-8. Untuk membatasi permasalahan, penelitian ini menggunakan objek perairan. Metode yang diajukan adalah algoritma sederhana di mana nilai reflektansi dari band masukan dikoreksi dengan nilai reflektansi band 9 secara linier. Data sebelum diolah dan data setelah diolah kemudian dibandingkan dengan data referensi. Hasil pembandingan tersebut menunjukkan perubahan yang cukup signifikan dengan nilai PSNR pada band 4 mencapai 23.687dB (data setelah diolah) dari 8.259dB (data sebelum diolah).Hlm.38-4
    corecore