3,300 research outputs found

    Bandlimited Spatial Field Sampling with Mobile Sensors in the Absence of Location Information

    Full text link
    Sampling of physical fields with mobile sensor is an emerging area. In this context, this work introduces and proposes solutions to a fundamental question: can a spatial field be estimated from samples taken at unknown sampling locations? Unknown sampling location, sample quantization, unknown bandwidth of the field, and presence of measurement-noise present difficulties in the process of field estimation. In this work, except for quantization, the other three issues will be tackled together in a mobile-sampling framework. Spatially bandlimited fields are considered. It is assumed that measurement-noise affected field samples are collected on spatial locations obtained from an unknown renewal process. That is, the samples are obtained on locations obtained from a renewal process, but the sampling locations and the renewal process distribution are unknown. In this unknown sampling location setup, it is shown that the mean-squared error in field estimation decreases as O(1/n)O(1/n) where nn is the average number of samples collected by the mobile sensor. The average number of samples collected is determined by the inter-sample spacing distribution in the renewal process. An algorithm to ascertain spatial field's bandwidth is detailed, which works with high probability as the average number of samples nn increases. This algorithm works in the same setup, i.e., in the presence of measurement-noise and unknown sampling locations.Comment: Submitted to IEEE Trans on Signal Processin

    Adaptive Resolution Simulation in Equilibrium and Beyond

    Full text link
    In this paper, we investigate the equilibrium statistical properties of both the force and potential interpolations of adaptive resolution simulation (AdResS) under the theoretical framework of grand-canonical like AdResS (GC-AdResS). The thermodynamic relations between the higher and lower resolutions are derived by considering the absence of fundamental conservation laws in mechanics for both branches of AdResS. In order to investigate the applicability of AdResS method in studying the properties beyond the equilibrium, we demonstrate the accuracy of AdResS in computing the dynamical properties in two numerical examples: The velocity auto-correlation of pure water and the conformational relaxation of alanine dipeptide dissolved in water. Theoretical and technical open questions of the AdResS method are discussed in the end of the paper

    Quantum enhanced estimation of a multi-dimensional field

    Get PDF
    We present a framework for the quantum enhanced estimation of multiple parameters corresponding to non-commuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all three components of a magnetic field. We propose a probe state that surpasses the precision of estimating the three components individually and discuss measurements that come close to attaining the quantum limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the Heisenberg scaling in quantum metrology.Comment: 9 pages, 1 figur
    corecore