2 research outputs found

    Flow cytometric analysis of Mixed phenotype acute leukemia: Experience from a tertiary oncology center

    No full text
    Introduction: Mixed phenotype acute leukemia (MPAL) is a rare subset of acute leukemia where the blasts exhibit lineage specific antigens of more than one lineage. Flow cytometric immunophenotyping is essential for the diagnosis of MPAL and the accurate diagnosis highly depends on the panel of markers used. The precise incidence of MPAL is uncertain as various institutions use different combinations of antibodies to assign the blasts to a particular lineage. Aim: The aim was to study the immunoprofile of acute leukemia including aberrant antigen expressions and to study the incidence, clinical features, laboratory findings, and immunophenotype of MPAL in our institution. Materials and Methods: All cases of acute leukemias in which flow cytometric analysis during 1-year period from July 2012 to July 2013 were included in this study. Results: During the study period, flow cytometric analysis of 506 cases was performed. B lymphoblastic leukemia was the most common subtype of acute leukemia. CD13 was the most common aberrant antigen expression in acute lymphoblastic leukemia and CD7 was the most common aberrant antigen expression in acute myeloid leukemia. A diagnosis of MPAL was made in 15 cases, which accounted for 2.96% of all leukemias. 9 cases were diagnosed as T/myeloid, 5 cases as B/myeloid and 1 case as B/T. Conclusion: Mixed phenotype acute leukemia is a rare subset of acute leukemia. Flow cytometry is critical in establishing a diagnosis of MPAL. The panel of antibodies used is important in the identification of the "mixed" phenotype. Cytoplasmic markers (cytoplasmic MPO, cytoplasmic 79a, cytoplasmic 22 and cytoplasmic CD3) should be included in the primary flow cytometric panel

    Stratified analyses refine association between TLR7 rare variants and severe COVID-19

    No full text
    Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway
    corecore