3,339 research outputs found

    A Stochastic model for dynamics of FtsZ filaments and the formation of Z-ring

    Full text link
    Understanding the mechanisms responsible for the formation and growth of FtsZ polymers and their subsequent formation of the ZZ-ring is important for gaining insight into the cell division in prokaryotic cells. In this work, we present a minimal stochastic model that qualitatively reproduces {\it in vitro} observations of polymerization, formation of dynamic contractile ring that is stable for a long time and depolymerization shown by FtsZ polymer filaments. In this stochastic model, we explore different mechanisms for ring breaking and hydrolysis. In addition to hydrolysis, which is known to regulate the dynamics of other tubulin polymers like microtubules, we find that the presence of the ring allows for an additional mechanism for regulating the dynamics of FtsZ polymers. Ring breaking dynamics in the presence of hydrolysis naturally induce rescue and catastrophe events in this model irrespective of the mechanism of hydrolysis.Comment: Replaced with published versio

    Farmers Suicide in India: Issues, Challenges and Remedies

    Get PDF
    The purpose of the study is to examine why Farmers suicide is a burning issue in India. Farmers are life savers then why they are killing themselves. Is there any nexus between farmers’ suicide and government actions. Agriculture sector data like GDP for 1960-2016, Share of agriculture sector to GDP and disparities in Agriculture and Non agriculture income also agriculture census data from 1951 to 2011 were obtained. Study depicts about what NSSO and NCRB data says about farmers’ distress in India. Doubling farmers’ income by 2022-23 could become the only panacea for thwarting farmers’ suicide in India comparison of agricultural income with non agricultural income also another area of study. In this way farmers suicide issues challenges and remedies has been discussed

    Algorithms for Fast Aggregated Convergecast in Sensor Networks

    Get PDF
    Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop en-route to the sink along a tree-based routing topology, and address the problem of minimizing the convergecast schedule length by utilizing multiple frequency channels. The primary hindrance in minimizing the schedule length is the presence of interfering links. We prove that it is NP-complete to determine whether all the interfering links in an arbitrary network can be removed using at most a constant number of frequencies. We give a sufficient condition on the number of frequencies for which all the interfering links can be removed, and propose a polynomial time algorithm that minimizes the schedule length in this case. We also prove that minimizing the schedule length for a given number of frequencies on an arbitrary network is NP-complete, and describe a greedy scheme that gives a constant factor approximation on unit disk graphs. When the routing tree is not given as an input to the problem, we prove that a constant factor approximation is still achievable for degree-bounded trees. Finally, we evaluate our algorithms through simulations and compare their performance under different network parameters

    Experimental Test of Quantum No-Hiding Theorem

    Full text link
    Linearity and unitarity are two fundamental tenets of quantum theory. Any consequence that follows from these must be respected in the quantum world. The no-cloning theorem and the no-deleting theorem are the consequences of the linearity and the unitarity. Together with the stronger no-cloning theorem they provide permanence to quantum information, thus, suggesting that in the quantum world information can neither be created nor be destroyed. In this sense quantum information is robust, but at the same time it is also fragile because any interaction with the environment may lead to loss of information. Recently, another fundamental theorem was proved, namely, the no-hiding theorem that addresses precisely the issue of information loss. It says that if any physical process leads to bleaching of quantum information from the original system, then it must reside in the rest of the universe with no information being hidden in the correlation between these two subsystems. This has applications in quantum teleportation, state randomization, private quantum channels, thermalization and black hole evaporation. Here, we report experimental test of the no-hiding theorem with the technique of nuclear magnetic resonance (NMR). We use the quantum state randomization of a qubit as one example of the bleaching process and show that the missing information can be fully recovered up to local unitary transformations in the ancilla qubits. Since NMR offers a way to test fundamental predictions of quantum theory using coherent control of quantum mechanical nuclear spin states, our experiment is a step forward in this direction.Comment: 12 pages, 6 Figs. Jharana Rani Samal, Deceased on her 27th birthday 12th Nov. 2009. The experimental work of this paper was completely carried out by the first author. We dedicate this paper to the memory of the brilliant soul of Ms. Jharana Rani Samal
    • 

    corecore