2 research outputs found

    EGFR Inhibition Strongly Modulates the Tumour Immune Microenvironment in EGFR-Driven Non-Small-Cell Lung Cancer

    No full text
    EGFR-driven non-small-cell lung cancer (NSCLC) patients are currently treated with TKIs targeting EGFR, such as erlotinib or osimertinib. Despite a promising initial response to TKI treatment, most patients gain resistance to oncogene-targeted therapy, and tumours progress. With the development of inhibitors against immune checkpoints, such as PD-1, that mediate an immunosuppressive microenvironment, immunotherapy approaches attempt to restore a proinflammatory immune response in tumours. However, this strategy has shown only limited benefits in EGFR-driven NSCLC. Approaches combining EGFR inhibition with immunotherapy to stimulate the immune response and overcome resistance to therapy have been limited due to insufficient understanding about the effect of EGFR-targeting treatment on the immune cells in the TME. Here, we investigate the impact of EGFR inhibition by erlotinib on the TME and its effect on the antitumour response of the immune cell infiltrate. For this purpose, we used a transgenic conditional mouse model to study the immunological profile in EGFR-driven NSCLC tumours. We found that EGFR inhibition mediated a higher infiltration of immune cells and increased local proliferation of T-cells in the tumours. Moreover, inhibiting EGFR signalling led to increased activation of immune cells in the TME. Most strikingly, combined simultaneous blockade of EGFR and anti-PD-1 (aPD-1) enhanced tumour treatment response in a transgenic mouse model of EGFR-driven NSCLC. Thus, our findings show that EGFR inhibition promotes an active and proinflammatory immune cell infiltrate in the TME while improving response to immune checkpoint inhibitors in EGFR-driven NSCLC

    Tripartite antigen-agnostic combination immunotherapy cures established poorly immunogenic tumors

    No full text
    Background Single-agent immunotherapy has shown remarkable efficacy in selected cancer entities and individual patients. However, most patients fail to respond. This is likely due to diverse immunosuppressive mechanisms acting in a concerted way to suppress the host anti-tumor immune response. Combination immunotherapy approaches that are effective in such poorly immunogenic tumors mostly rely on precise knowledge of antigenic determinants on tumor cells. Creating an antigen-agnostic combination immunotherapy that is effective in poorly immunogenic tumors for which an antigenic determinant is not known is a major challenge. Methods We use multiple cell line and poorly immunogenic syngeneic, autochthonous, and autologous mouse models to evaluate the efficacy of a novel combination immunotherapy named tripartite immunotherapy (TRI-IT). To elucidate TRI-ITs mechanism of action we use immune cell depletions and comprehensive tumor and immune infiltrate characterization by flow cytometry, RNA sequencing and diverse functional assays. Results We show that combined adoptive cellular therapy (ACT) with lymphokine-activated killer cells, cytokine-induced killer cells, V gamma 9V delta 2-T-cells (gamma delta-T-cells) and T-cells enriched for tumor recognition (CTLs) display synergistic antitumor effects, which are further enhanced by cotreatment with anti-PD1 antibodies. Most strikingly, the full TRI-IT protocol, a combination of this ACT with anti-PD1 antibodies, local immunotherapy of agonists against toll-like receptor 3, 7 and 9 and pre-ACT lymphodepletion, eradicates and induces durable anti-tumor immunity in a variety of poorly immunogenic syngeneic, autochthonous, as well as autologous humanized patient-derived models. Mechanistically, we show that TRI-IT coactivates adaptive cellular and humoral, as well as innate antitumor immune responses to mediate its antitumor effect without inducing off-target toxicity. Conclusions Overall, TRI-IT is a novel, highly effective, antigen-agnostic, non-toxic combination immunotherapy. In this study, comprehensive insights into its preclinical efficacy, even in poorly immunogenic tumors, and mode of action are given, so that translation into clinical trials is the next step
    corecore