71 research outputs found

    Population-level Task-evoked Functional Connectivity

    Full text link
    Functional magnetic resonance imaging (fMRI) is a non-invasive and in-vivo imaging technique essential for measuring brain activity. Functional connectivity is used to study associations between brain regions either at rest or while study subjects perform tasks. In this paper, we propose a rigorous definition of task-evoked functional connectivity at the population level (ptFC). Importantly, our proposed ptFC is interpretable in the context of task-fMRI studies. An algorithm for estimating ptFC is provided. We present the performance of the proposed algorithm compared to existing functional connectivity estimation approaches using simulations. Lastly, we apply the proposed framework to estimate task-evoked functional connectivity in a motor-task study from the Human Connectome Project. We show that the proposed algorithm identifies associations regions of the brain related to the performance of motor tasks as expected.Comment: 45 pages, 9 figure

    Randomness of Shapes and Statistical Inference on Shapes via the Smooth Euler Characteristic Transform

    Full text link
    In this article, we establish the mathematical foundations for modeling the randomness of shapes and conducting statistical inference on shapes using the smooth Euler characteristic transform. Based on these foundations, we propose two parametric algorithms for testing hypotheses on random shapes. Simulation studies are presented to validate our mathematical derivations and to compare our algorithms with state-of-the-art methods to demonstrate the utility of our proposed framework. As real applications, we analyze a data set of mandibular molars from four genera of primates and show that our algorithms have the power to detect significant shape differences that recapitulate known morphological variation across suborders. Altogether, our discussions bridge the following fields: algebraic and computational topology, probability theory and stochastic processes, Sobolev spaces and functional analysis, statistical inference, and geometric morphometrics.Comment: 99 page

    Distributed model building and recursive integration for big spatial data modeling

    Full text link
    Motivated by the need for computationally tractable spatial methods in neuroimaging studies, we develop a distributed and integrated framework for estimation and inference of Gaussian process model parameters with ultra-high-dimensional likelihoods. We propose a shift in viewpoint from whole to local data perspectives that is rooted in distributed model building and integrated estimation and inference. The framework's backbone is a computationally and statistically efficient integration procedure that simultaneously incorporates dependence within and between spatial resolutions in a recursively partitioned spatial domain. Statistical and computational properties of our distributed approach are investigated theoretically and in simulations. The proposed approach is used to extract new insights on autism spectrum disorder from the Autism Brain Imaging Data Exchange.Comment: 21 pages, 4 figures, 5 table

    LIKELIHOOD BASED POPULATION INDEPENDENT COMPONENT ANALYSIS

    Get PDF
    Independent component analysis (ICA) is a widely used technique for blind source separation, used heavily in several scientific research areas including acoustics, electrophysiology and functional neuroimaging. We propose a scalable two-stage iterative true group ICA methodology for analyzing population level fMRI data where the number of subjects is very large. The method is based on likelihood estimators of the underlying source densities and the mixing matrix. As opposed to many commonly used group ICA algorithms the proposed method does not require significant data reduction by a twofold singular value decomposition. In addition, the method can be applied to a large group of subjects since the memory requirements are not restrictive. The performance of our approach is compared with commonly used group ICA algorithms is shown by using simulation studies. Furthermore, the proposed method is applied to a large collection of resting state fMRI datasets. The results show that the postulated brain networks are recovered by the proposed algorithm

    ANALYTIC PROGRAMMING WITH fMRI DATA: A QUICK-START GUIDE FOR STATISTICIANS USING R

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a thriving field that plays an important role in medical imaging analysis, biological and neuroscience research and practice. This manuscript gives a didactic introduction to the statistical analysis of fMRI data using the R project along with the relevant R code. The goal is to give tatisticians who would like to pursue research in this area a quick start for programming with fMRI data along with the available data visualization tools

    Relating multi-sequence longitudinal intensity profiles and clinical covariates in new multiple sclerosis lesions

    Get PDF
    Structural magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients. The formation of these lesions is a complex process involving inflammation, tissue damage, and tissue repair, all of which are visible on MRI. Here we characterize the lesion formation process on longitudinal, multi-sequence structural MRI from 34 MS patients and relate the longitudinal changes we observe within lesions to therapeutic interventions. In this article, we first outline a pipeline to extract voxel level, multi-sequence longitudinal profiles from four MRI sequences within lesion tissue. We then propose two models to relate clinical covariates to the longitudinal profiles. The first model is a principal component analysis (PCA) regression model, which collapses the information from all four profiles into a scalar value. We find that the score on the first PC identifies areas of slow, long-term intensity changes within the lesion at a voxel level, as validated by two experienced clinicians, a neuroradiologist and a neurologist. On a quality scale of 1 to 4 (4 being the highest) the neuroradiologist gave the score on the first PC a median rating of 4 (95% CI: [4,4]), and the neurologist gave it a median rating of 3 (95% CI: [3,3]). In the PCA regression model, we find that treatment with disease modifying therapies (p-value < 0.01), steroids (p-value < 0.01), and being closer to the boundary of abnormal signal intensity (p-value < 0.01) are associated with a return of a voxel to intensity values closer to that of normal-appearing tissue. The second model is a function-on-scalar regression, which allows for assessment of the individual time points at which the covariates are associated with the profiles. In the function-on-scalar regression both age and distance to the boundary were found to have a statistically significant association with the profiles
    • …
    corecore